PROBUS

RS485 MODBUS I/O Modules

User Manual

P.O.Box 164 Seven Hills 1730 NSW AUSTRALIA

 Tel:
 +61 2 96248376

 Fax:
 +61 2 9620 8709

 Email:
 proconel@proconel.com

 Web:
 www.proconel.com

Disclaimer

Procon Electronics makes no representations or warranties with respect to the contents hereof. In addition, information contained herein are subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Procon Electronics assumes no responsibility, express or implied, for errors or omissions or any damages resulting from the use of the information contained in this publication.

All trademarks belong to their respective owners.

TABLE OF CONTENTS

1.	AN C	OVERVIEW OF THE PROBUS SYSTEM	6
1.1	Ιντι	RODUCTION	6
1.2	App	LICATION CONFIGURATIONS	6
1	.2.1	I/O Expansion	6
1	.2.2	Data Acquisition	7
1	.2.3	Ethernet	7
1	.2.4	Other Applications.	7
1.3	Мо	DULE SELECTION TABLE	
2.	PRO	BUS GENERAL INFORMATION	9
2.1	Рну	SICAL DIMENSIONS	9
2.2	DIN	I RAIL BUS ADAPTOR	10
2.3	INST	TALLING THE MODULE ONTO THE DIN RAIL	10
2.4	Ren	IOVING THE MODULE FROM THE DIN RAIL	
2.5	GRO	DUNDING/SHIELDING	
2.6	Νετ	WORK TERMINATION	
2.7	RS4	85 Network Wiring	
2.8	RS4	85 Network Protection	
2.9	Set	TING THE MODBUS NODE ID	
2	2.9.1	Changing the DIP switch to set the Node ID and baud rate	
2	2.9.2	DIP Switch Status Register.	
2	2.9.3	Node ID Table	
2.1	0 Cor	/munications Settings	
2	2.10.1	Communications Settings with DIP Switch 8 OFF (Default)	
2	2.10.2	Communications Settings with DIP Switch 8 ON (Programmed Baud Rate)	
2	2.10.3	Communications Settings Registers	
	2.10.4	Modbus Register Types	
	2.10.5	Modbus Functions	
2.1	1 Pov	VER SUPPLY AND COMMUNICATIONS WIRING	
2	2.11.1	Wiring connections	
	2.11.2	Wiring Descriptions	
3.	PRO	BUS MODULES	
2.4			24
3.1		L6DI - DIGITAL INPUTS WITH COUNTERS	
	3.1.1	Description	
		Technical Specification of PB16DI	
-	3.1.3	Status Indicators	
-	3.1.4	Wiring	
-	3.1.5	PB16DI Data Registers (MODULE TYPE = 150)	
3.2		L6DO - DIGITAL OUTPUTS	
-	3.2.1	Description	
-	3.2.2	Technical Specification of PB16DO	
-	3.2.3	Status Indicators	
-	3.2.4	Wiring	
-	3.2.5	PB16DO Data Registers (MODULE TYPE = 151)	
3.3		SRO - RELAY OUTPUTS	
-	3.3.1	Description	
-	3.3.2	Technical Specification of PB6RO	
-	3.3.3	Status Indicators	
	3.3.4	Wiring	
3	3.3.5	PB6RO Data Registers (MODULE TYPE = 162)	

3.4	PB6DIO - DIGITAL INPUTS / OUTPUTS	
3.4.	.1 Description	
3.4.	.2 Technical Specification of PB6DIO	
3.4.	.3 Status Indicators	
3.4.	.4 Wiring	
3.4.	.5 PB6DIO Data Registers (MODULE TYPE = 152)	
3.5	PB8AII –ANALOG INPUTS (CURRENT)	41
3.5.	.1 Description	41
3.5.	.2 Technical Specification of PB8AII	41
3.5.	.3 Status Indicators	
3.5.	.4 Wiring	43
3.5.	.5 Module Calibration	43
3.5.	.6 PB8AII Data Registers (MODULE TYPE = 153)	
3.6	PB8AIV – VOLTAGE ANALOG INPUTS	46
3.6.	.1 Description	46
3.6.	.2 Technical Specification of PB8AIV	46
3.6.	.3 Status Indicators	47
3.6.	.4 Wiring	
3.6.	.5 Module Calibration	
3.6.	.6 PB8AIV Data Registers (MODULE TYPE = 154)	
3.7		
3.7.	.1 Description	51
3.7.	.2 Technical Specification of PB6AIIS	51
3.7.	.3 Status Indicators	52
3.7.	.4 Wiring	53
3.7.	.5 Module Calibration	53
3.7.	.6 PB6AIIS Data Registers (TYPE = 157)	54
3.8	PB6AIVS - ISOLATED VOLTAGE ANALOG INPUTS	
3.8.		
3.8.		
3.8.	•	
3.8.		
3.8.	-	
3.8.	.6 PB6AIVSData Registers (TYPE = 158)	
3.9		
3.9.		
3.9.	.2 Technical Specification of PB6TCS	62
3.9.	•	
3.9.		
3.9.	-	
3.9.	.6 PB6TCS Data Registers (MODULE TYPE = 156)	65
3.10	PB6RTD - RTD INPUTS	
3.10	0.1 Description	66
3.10	0.2 Technical Specification of PB6RTD	67
3.10		
3.10		
3.10	0.5 Module Calibration	69
3.10		
3.11	PB6AOI - ANALOG OUTPUTS	
3.11		
3.11		
3.11		
3.11		
3.11	-	
3.11		
3.12	PB6AOV - ANALOG OUTPUTS	
3.12		

3.12.2	Technical Specification of PB6AOV	76
3.12.3	Status Indicators	
3.12.4	Wiring	78
3.12.5	Module Calibration	78
3.12.6	PB6AOV Data Registers (MODULE TYPE = 161)	79
3.13 PBE	- MODBUS TCP ETHERNET TO MODBUS RS485 GATEWAY	80
3.13.1	Description	80
3.13.2	Technical Specification of PBE	80
3.13.3	Status Indicators	81
3.13.4	Configuration	
3.13.5	Viewing Web Pages	
3.13.6	Troubleshooting Guide	
3.13.7	Parameter Configuration	87
4. SPEC	IFICATIONS	
	IRONMENTAL	
	CINSTALLATION INSTRUCTIONS	
	IFORMITY CERTIFICATE	
4.4 EM0	C TEST RESULTS	91

1. AN OVERVIEW OF THE PROBUS SYSTEM

1.1 Introduction

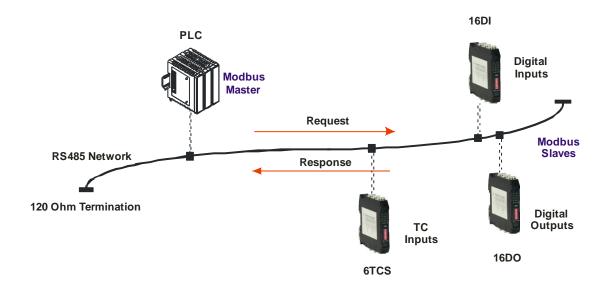
PROBUS is an innovative modular I/O system which provides a simple low cost solution for distributed I/O requirements.

The PROBUS system consists of stand-alone Digital and Analog Input and Output modules which are connected together on a **RS485** two wire multi-drop network.

The modules plug into a special bus connector which fits inside the DIN rail.

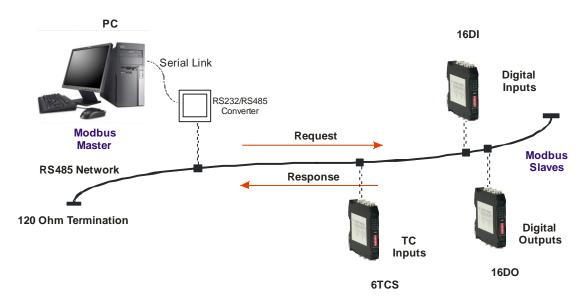
The modules communicate using the **MODBUS RTU** protocol. A 32bit ARM CPU is used in the modules to provide high speed data processing and fast communications turnaround times. Multiple baud rates are selectable from 2400 to 115200 baud.

All PROBUS modules plug directly onto an industry standard DIN rail. All modules have a minimum isolation of 1500VAC rms between the field and logic and all RS485 circuits are isolated.


The modules have been equipped with status led's which are used to indicate the status of the Inputs or outputs. This visual indication assists with fault finding and diagnostics.

1.2 Application Configurations

There are a number of different configurations in which the PROBUS modules may be used in a system. Some are listed as follows:


1.2.1 I/O Expansion.

There are a number of devices such as **PLC**'s (Programmable Logic Controllers) which have a MODBUS Communications facility available. When configured as a MODBUS Master, and attached to the RS485 network, the PLC can use the PROBUS Modules as remote I/O reducing cabling costs and increasing the I/O capability of the PLC.

1.2.2 Data Acquisition.

Another use of the PROBUS Modules is for Data Acquisition where a **PC** (Personal Computer) is connected to the Network. Many SCADA software packages support the MODBUS Master Protocol and can hence retrieve data from Input Modules or send data to Output Modules. The **serial port** of the PC is connected to an **RS232/RS485 Converter** which in turn is connected to the Network.

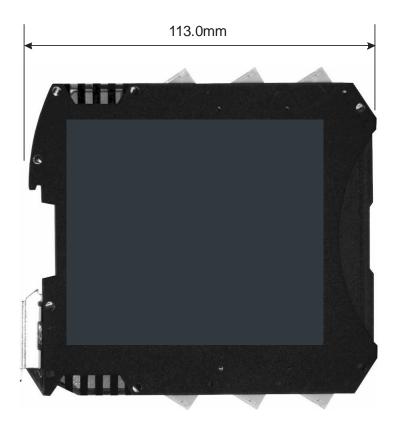
1.2.3 Ethernet.

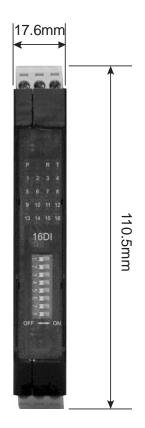
Procon has developed a Converter which connects to a standard 10/100BaseT Ethernet network. The Converter is given a network IP address and can be accessed by up to 8 PC's at a time. The converter enables PC's and PLC's using the MODBUS/TCP protocol to communicate with the range of PROBUS modules.

1.2.4 Other Applications.

PROBUS Modules can be connected to a PC or PLC for remote monitoring and control via radio telemetry using third party RF transceivers, Dial-up modems or GPRS modems.

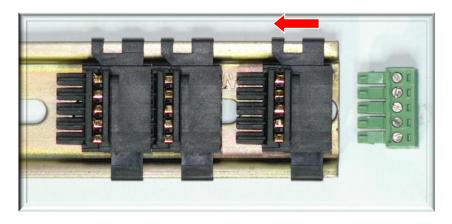
1.3 Module Selection Table


MODEL	MODULE TYPE
	I/O MODULES
<u>PB16DI</u>	16 DIGITAL INPUT MODULE INCLUDING COUNTERS
<u>PB16DO</u>	16 DIGITAL OUTPUT MODULE
PB6RO	6 RELAY OUTPUT MODULE
PB6DIO	6 DIGITAL INPUT / 6 DIGITAL OUTPUT MODULE
PB8AII	8 ANALOG INPUT 0 - 20mA / 4 - 20mA – 16bit
PB8AIV	8 ANALOG INPUT 0 - 10V / 2 - 10V – 16bit
PB6AIIS	8 ANALOG INPUT 0 - 20mA / 4 - 20mA / \pm 20mA FULLY ISOLATED
PB6AIVS	8 ANALOG INPUT 0 - 1V / 0 - 10V / \pm 1V / \pm 10V FULLY ISOLATED
PB6TCS	8 TC INPUT MODULE INCL. 0 - 50mV & \pm 100mV $$ I/P FULLY ISOLATED
PB6RTD	6 RTD INPUT MODULE - PT100, Ni120, PT1000, Ni1000, Ni1000LG & Ohms
PB6AOI	8 ANALOG OUTPUT MODULE 0(4) – 20mA
PB6AOV	8 ANALOG OUTPUT MODULE 0(2) – 10V
PB-E	Modbus/TCP Ethernet to Serial RS485 gateway
PB-P	Profibus to Serial RS485 gateway

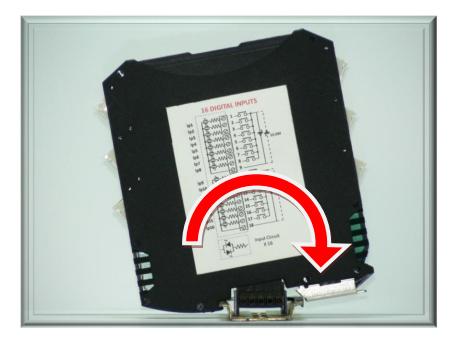

2. PROBUS GENERAL INFORMATION

2.1 Physical Dimensions

The PROBUS enclosure is shown below. The module clips directly onto an industry standard DIN rail. Field wiring is on the top and bottom of the module via 6 plug-in connectors. The module power and RS485 communications wiring is on a separate connector which clips onto the DIN rail on the back of the housing.


Allow at least 25mm on top and below the module to accommodate the wiring. Ensure that enough space is kept above and below the module for good ventilation.

2.2 DIN rail Bus adaptor


The PROBUS connector allows side-by-side install of the Modules. The picture below shows multiple PROBUS connectors installed on a DIN rail. First, install the PROBUS connector onto the DIN rail, then slide into the adjacent PROBUS connector.

2.3 Installing the module onto the DIN rail

The Probus modules are designed to be installed on a standard 35 mm DIN rail. Snap the PROBUS connector first into the rail as shown above. Next clip the top of the module onto the DIN rail and pivot the Module onto the DIN rail. The spring loaded clasp will latch around onto the DIN resulting in a firmly seated product. Do not force the module onto the connector otherwise the module or connector may be damaged.

Note: The modules are not designed for hot plug in. The power must be turned off before the modules are plugged into the base.

2.4 Removing the module from the DIN rail

To remove the module from the DIN Rail, use a flat blade screwdriver to pry the spring loaded clasp away from the DIN rail in the manner shown in the picture below. Next pivot the module up and away from the DIN rail and remove.

2.5 Grounding/Shielding

In most cases, PROBUS modules will be installed in an enclosure along with other devices which generate electromagnetic radiation. Examples of these devices are relays and contactors, transformers, motor controllers etc. This electromagnetic radiation can induce electrical noise into both power and signal lines, as well as direct radiation into the module causing negative effects on the system. Appropriate grounding, shielding and other protective steps should be taken at the installation stage to prevent these effects. These protective steps include control cabinet grounding, module grounding, cable shield grounding, protective elements for electromagnetic switching devices, correct wiring as well as consideration of cable types and their cross sections.

2.6 Network Termination

Transmission line effects often present a problem on data communication networks. These problems include reflections and signal attenuation.

To eliminate the presence of reflections from the end of the cable, the cable must be terminated at both ends with a resistor across the line equal to its characteristic impedance. Both ends must be terminated since the direction of propagation is bi-directional. In the case of an RS485 twisted pair cable this termination is typically 120 ohms.

2.7 RS485 Network Wiring

RS485 is designed to be used with a single twisted pair cable. One of the restrictions of this system is that the common mode voltages of the nodes on the network should not exceed -7V or +10V. In order to ensure that this condition is met, it is recommended that the RS485 GND connections on the

modules be connected together. For modules that are far apart, a second twisted pair should be used as the RS485 GND link.

In certain applications where there are strong possibilities of an earth loop being caused by the RS485 GND link, the link should be tied to the RS485 GND terminal on each module through a 100ohm resistor, to limit the earth loop current.

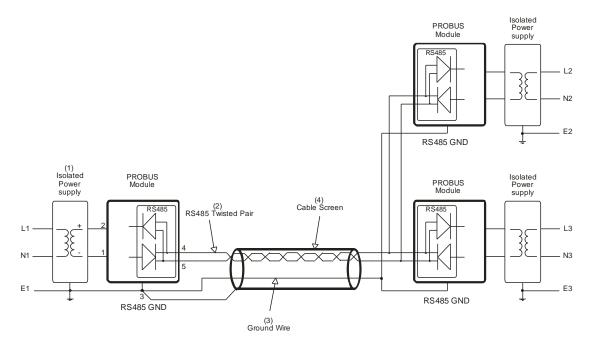
Where earth loop problems exist, it may be necessary to isolate the RS485 network either using optical fiber or an isolated RS485 repeater such as the PB485REP module.

RS485 Cabling Methodology

Method-1, Single Twisted pair, No shield

In this case, "Earth" is ground and it is inexpensive, easy to install. This kind of cabling is suitable if conduits are used for communication cables, power supply cables are not available and the environment is free from electrical noise. This method is not recommended for industrial applications.

Method-2, Shielded single twisted pair + Earth wire


One pair is used for RS-485 communications and extra wire used specifically for a ground wire.

Method-3, Shielded single twisted pair cable

One pair is used for RS-485 communications and shield is used for return.

Method-4, Shielded twisted pair, 2 pairs

One pair is used for the RS-485 communications and another pair is used for ground. Method 2 to 4 would reduce noise induced through ground potential differences. This is the preferred option in areas where there is a potential for high electrical noise or if cabling lacks the cleanliness of conduit or wire trays. The drawback of the three conductor option is elevated cable pricing and is slightly more difficult to install. Care must also be taking using this option not to create a ground loop.

Good installation practice for RS485 systems:

1. Use RS485 twisted cable to prevent electrical noise pickup.

2. Use a ground wire to connect all of the RS485 GND terminals on the modules together. This ensures that all of the modules are at the same potential. The ground wire must be earthed at one only.

3. Use a screened cable to prevent electrical noise pickup. This screen must be earthed at one end only. If a ground wire is not available then the screen can be used instead. To get the best performance this is not recommended.

4. The RS485 and power supply is wired correctly.

5. Do not carry RS485 and 24V DC power supply in same cables.

6. Use Separate isolated 24V DC for RS485 devices power supply and field inputs.

7. The OV of the power supply must be earthed.

8. The screen of the RS485 cable must be earthed.

9. The RS485 devices must be at the same earth potential.

10. Use optical isolators in RS485 line to provide protection from low frequency interference from ground loops.

11. Do proper termination and/or shielding to provide isolation from high frequency interference, RFI, and transients.

12. The power supply must have good filters and protection on the 220V/110V side.

13. The RS485 line should have external over voltage protection to protect from high voltage electrical noise being induced into the RS485 cable.

14. Make sure there is a dedicated Instrumentation ground system to be used with RS485 devices.

2.8 RS485 Network Protection

Being used in an industrial environment, the RS485 network could pick up electrical noise from other machinery or even lightening. In this case it is advised that an RS485 network protection device be used at the entry point to the panel where the PROBUS modules are housed.

2.9 Setting the Modbus Node ID

2.9.1 Changing the DIP switch to set the Node ID and baud rate

The DIP switches are provided to manually configure the module node ID and baud rate. Switches 1 through 7 set the node ID sequentially starting at 0 and ending at 127. Switch 8 sets the baud rate at either 9600 or user programmed in memory.

The software in the module samples the dip switches on a reset when the power is cycled. Once sampled, the software writes the settings into the internal UART. The user is welcome to change the dip switches while the module is powered, however, a reset must be initiated afterward.

The DIP switch can be toggled using a small flat blade screwdriver, or equivalent tool, as shown in the picture below.

2.9.2 DIP Switch Status Register.

Each module uses register 30100 to store the status of the DIP switches.

MSB					DIP SWITCH REGISTER							LSB				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	30100
0	0	0 0	0	0	0	0										- SW 1 - SW 2 - SW 3 - SW 4 - SW 5 - SW 6 - SW 7 - SW 8
	DOCON															

2.9.3 Node ID Table

The following table assists with the setting up of DIP switches for the required NODE ID.

NODE ID	DIP SWITCH SETTINGS								
	SW1	SW2	SW3	SW4	SW5	SW6	SW7		
0	OFF	OFF	OFF	OFF	OFF	OFF	OFF		
	-	-	-	-	OFF	-			
1	ON	OFF	OFF	OFF	-	OFF	OFF		
2	OFF	ON	OFF	OFF	OFF	OFF	OFF		
3 4	ON	ON	OFF	OFF	OFF	OFF	OFF		
	OFF	OFF	ON	OFF	OFF	OFF	OFF		
5	ON	OFF	ON	OFF	OFF	OFF	OFF		
6	OFF	ON	ON	OFF	OFF	OFF	OFF		
7	ON	ON	ON	OFF	OFF	OFF	OFF		
8	OFF	OFF	OFF	ON	OFF	OFF	OFF		
9	ON	OFF	OFF	ON	OFF	OFF	OFF		
10	OFF	ON	OFF	ON	OFF	OFF	OFF		
11	ON	ON	OFF	ON	OFF	OFF	OFF		
12	OFF	OFF	ON	ON	OFF	OFF	OFF		
13	ON	OFF	ON	ON	OFF	OFF	OFF		
14	OFF	ON	ON	ON	OFF	OFF	OFF		
15	ON	ON	ON	ON	OFF	OFF	OFF		
16	OFF	OFF	OFF	OFF	ON	OFF	OFF		
17	ON	OFF	OFF	OFF	ON	OFF	OFF		
18	OFF	ON	OFF	OFF	ON	OFF	OFF		
19	ON	ON	OFF	OFF	ON	OFF	OFF		
20	OFF	OFF	ON	OFF	ON	OFF	OFF		
21	ON	OFF	ON	OFF	ON	OFF	OFF		
22	OFF	ON	ON	OFF	ON	OFF	OFF		
23	ON	ON	ON	OFF	ON	OFF	OFF		
24	OFF	OFF	OFF	ON	ON	OFF	OFF		
25	ON	OFF	OFF	ON	ON	OFF	OFF		
26	OFF	ON	OFF	ON	ON	OFF	OFF		
27	ON	ON	OFF	ON	ON	OFF	OFF		
28	OFF	OFF	ON	ON	ON	OFF	OFF		
29	ON	OFF	ON	ON	ON	OFF	OFF		
30	OFF	ON	ON	ON	ON	OFF	OFF		
31	ON	ON	ON	ON	ON	OFF	OFF		
32	OFF	OFF	OFF	OFF	OFF	ON	OFF		
33	ON	OFF	OFF	OFF	OFF	ON	OFF		
34	OFF	ON	OFF	OFF	OFF	ON	OFF		
35	ON	ON	OFF	OFF	OFF	ON	OFF		
36	OFF	OFF	ON	OFF	OFF	ON	OFF		
37	ON	OFF	ON	OFF	OFF	ON	OFF		
38	OFF	ON	ON	OFF	OFF	ON	OFF		
39	ON	ON	ON	OFF	OFF	ON	OFF		
40	OFF	OFF	OFF	ON	OFF	ON	OFF		
40	OFF	OFF	OFF	ON	OFF	ON	OFF		

NODE ID	DIP SWITCH SETTINGS								
	SW1	SW2	SW3	SW4	SW5	SW6	SW7		
42	OFF	ON	OFF	ON	OFF	ON	OFF		
43	ON	ON	OFF	ON	OFF	ON	OFF		
44	OFF	OFF	ON	ON	OFF	ON	OFF		
45	ON	OFF	ON	ON	OFF	ON	OFF		
46	OFF	ON	ON	ON	OFF	ON	OFF		
47	ON	ON	ON	ON	OFF	ON	OFF		
48	OFF	OFF	OFF	OFF	ON	ON	OFF		
49	ON	OFF	OFF	OFF	ON	ON	OFF		
50	OFF	ON	OFF	OFF	ON	ON	OFF		
51	ON	ON	OFF	OFF	ON	ON	OFF		
52	OFF	OFF	ON	OFF	ON	ON	OFF		
53	ON	OFF	ON	OFF	ON	ON	OFF		
54	OFF	ON	ON	OFF	ON	ON	OFF		
55	ON	ON	ON	OFF	ON	ON	OFF		
56	OFF	OFF	OFF	ON	ON	ON	OFF		
57	ON	OFF	OFF	ON	ON	ON	OFF		
58	OFF	ON	OFF	ON	ON	ON	OFF		
59	ON	ON	OFF	ON	ON	ON	OFF		
60	OFF	OFF	ON	ON	ON	ON	OFF		
61	ON	OFF	ON	ON	ON	ON	OFF		
62	OFF	ON	ON	ON	ON	ON	OFF		
63	ON	ON	ON	ON	ON	ON	OFF		
64	OFF	OFF	OFF	OFF	OFF	OFF	ON		
65	ON	OFF	OFF	OFF	OFF	OFF	ON		
66	OFF	ON	OFF	OFF	OFF	OFF	ON		
67	ON	ON	OFF	OFF	OFF	OFF	ON		
68	OFF	OFF	ON	OFF	OFF	OFF	ON		
69	OFF	OFF	ON	OFF	OFF	OFF	ON		
70	OFF	OFF	ON	OFF	OFF	OFF	ON		
70	OFF	ON	ON	OFF	OFF	OFF	ON		
71	OFF	OFF	OFF	OFF	OFF	OFF	ON		
72	OFF	OFF	OFF	ON	OFF	OFF	ON		
				1					
74 75	OFF	ON ON	OFF OFF	ON ON	OFF OFF	OFF OFF	ON ON		
	ON OFF				-				
76 77	OFF	OFF OFF	ON ON	ON ON	OFF OFF	OFF OFF	ON ON		
		-							
78	OFF	ON	ON	ON	OFF	OFF	ON		
79	ON	ON	ON	ON OFF	OFF	OFF	ON		
80	OFF	OFF	OFF	OFF	ON	OFF	ON		
81	ON	OFF	OFF	OFF	ON	OFF	ON		
82	OFF	ON	OFF	OFF	ON	OFF	ON		
83	ON	ON	OFF	OFF	ON	OFF	ON		
84	OFF	OFF	ON	OFF	ON	OFF	ON		
85	ON	OFF	ON	OFF	ON	OFF	ON		
86	OFF	ON	ON	OFF	ON	OFF	ON		
87	ON	ON	ON	OFF	ON	OFF	ON		
88	OFF	OFF	OFF	ON	ON	OFF	ON		
89	ON	OFF	OFF	ON	ON	OFF	ON		
90	OFF	ON	OFF	ON	ON	OFF	ON		

NODE ID	DIP SWITCH SETTINGS								
	SW1	SW2	SW3	SW4	SW5	SW6	SW7		
91	ON	ON	OFF	ON	ON	OFF	ON		
92	OFF	OFF	ON	ON	ON	OFF	ON		
93	ON	OFF	ON	ON	ON	OFF	ON		
94	OFF	ON	ON	ON	ON	OFF	ON		
95	ON	ON	ON	ON	ON	OFF	ON		
96	OFF	OFF	OFF	OFF	OFF	ON	ON		
97	ON	OFF	OFF	OFF	OFF	ON	ON		
98	OFF	ON	OFF	OFF	OFF	ON	ON		
99	ON	ON	OFF	OFF	OFF	ON	ON		
100	OFF	OFF	ON	OFF	OFF	ON	ON		
101	ON	OFF	ON	OFF	OFF	ON	ON		
102	OFF	ON	ON	OFF	OFF	ON	ON		
103	ON	ON	ON	OFF	OFF	ON	ON		
104	OFF	OFF	OFF	ON	OFF	ON	ON		
105	ON	OFF	OFF	ON	OFF	ON	ON		
106	OFF	ON	OFF	ON	OFF	ON	ON		
107	ON	ON	OFF	ON	OFF	ON	ON		
108	OFF	OFF	ON	ON	OFF	ON	ON		
109	ON	OFF	ON	ON	OFF	ON	ON		
110	OFF	ON	ON	ON	OFF	ON	ON		
111	ON	ON	ON	ON	OFF	ON	ON		
112	OFF	OFF	OFF	OFF	ON	ON	ON		
113	ON	OFF	OFF	OFF	ON	ON	ON		
114	OFF	ON	OFF	OFF	ON	ON	ON		
115	ON	ON	OFF	OFF	ON	ON	ON		
116	OFF	OFF	ON	OFF	ON	ON	ON		
117	ON	OFF	ON	OFF	ON	ON	ON		
118	OFF	ON	ON	OFF	ON	ON	ON		
119	ON	ON	ON	OFF	ON	ON	ON		
120	OFF	OFF	OFF	ON	ON	ON	ON		
121	ON	OFF	OFF	ON	ON	ON	ON		
122	OFF	ON	OFF	ON	ON	ON	ON		
123	ON	ON	OFF	ON	ON	ON	ON		
123	OFF	OFF	ON	ON	ON	ON	ON		
125	ON	OFF	ON	ON	ON	ON	ON		
126	OFF	ON	ON	ON	ON	ON	ON		
127	ON	ON	ON	ON	ON	ON	ON		

All modules will respond to a default Node ID of 254.

2.10 Communications Settings

The data in the modules are stored in 16 bit registers. These registers are accessed over the network using the MODBUS **RTU** communication protocol.

2.10.1 Communications Settings with DIP Switch 8 OFF (Default)

BAUD RATE	9600
DATA BITS	8
PARITY	NONE
STOP BITS	1

2.10.2 Communications Settings with DIP Switch 8 ON (Programmed Baud Rate)

BAUD RATE	2400, 4800, 9600, 19200, 38400, 57600, 115200, 187500
DATA BITS	8
PARITY	None, Even, Odd
STOP BITS	1, 2

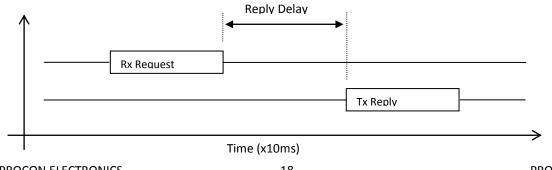
2.10.3 Communications Settings Registers

40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 11520, 18750
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits
40124	Reply Delay	0	255	R/W	(x10ms)

2.10.3.1 Baud Rate Register (40121)

The baud rate value is programmed directly into the baud rate register. The only exception is the 115200 baud rate where the value 11520 is used and 187500 baud where the value 18750 is used.

2.10.3.2 Parity Register (40122)


The parity can be set to none by writing a 0 to the parity register, set to even by writing a 1 to the parity Register or set to odd by writing a 2 to the parity register.

2.10.3.3 Stop Bits Register (40123)

The number of stop bits can be set to 1 by writing a 1 to the stop bits register or set to 2 by writing a 2 to the stop bits Register.

2.10.3.4 Reply Delay Register (40124)

The reply delay is a time delay between the Modbus message received to the reply being sent. In some applications where a modem or radio is used in the RS485 network, it may be necessary to add a reply delay due to turn around delays in the equiPBent.

2.10.4 Modbus Register Types

There are 4 types of variables which can be accessed from the module. Each module has one or more of these data variables.

<u>Type</u>	Start Address	<u>Variable</u>	<u>Access</u>
1	00001	Digital Outputs	Read & Write
2	10001	Digital Inputs	Read Only
3	30001	Input registers (Analog)	Read Only
4	40001	Output registers (Analog)	Read & Write

<u>Note</u>: The Modbus message length must be limited to 100 consecutive read or write registers. If more registers are required then a new poll group must be added for the next xxx registers.

2.10.5 Modbus Functions

The PROBUS modules will respond to the following Modbus functions:

Function 1 – Read I/O status (Digital Inputs and Outputs)
Function 2 – Read I/O status (Digital Inputs and Outputs)
Function 3 – Read Register (Analog Inputs and Outputs)
Function 4 – Read Register (Analog Inputs and Outputs)
Function 5 – Write Single Digital Output (Digital Outputs)
Function 6 – Write Single Register (Analog Outputs)
Function 15 – Write Multiple Digital Outputs (Digital Outputs)
Function 16 – Write Multiple Registers (Analog Outputs)

2.11 Power supply and Communications Wiring

2.11.1 Wiring connections

The following diagram shows the wiring for the power and RS485 communications.

2.11.2 Wiring Descriptions

Termi	inal	Description
1	Power 0V	The DC power supply GND or 0V connection.
2	Power +24V	The DC power supply positive connection. 12V to 24V. Note some modules
		will only work with +24V.
3	RS485 GND	The RS485 circuit is isolated from the DC power supply for the module. The
		RS485 GND connection is not connected to the DC power supply GND. Use a
		seperate ground wire to connect all of the RS485 GND terminals on the
		modules together. This ensures that all of the modules are at the same
		potential. The ground wire must be earthed at one end only.
4	RS485 -	RS485 network connection
5	RS485 +	RS485 network connection

3. PROBUS MODULES

3.1 PB16DI - DIGITAL INPUTS WITH COUNTERS

3.1.1 Description

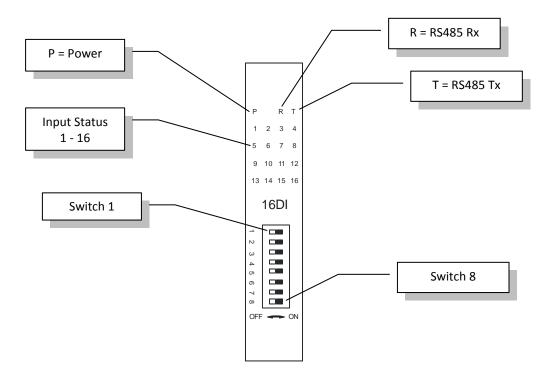
The PB16DI module is a 16 channel digital input module. The inputs are isolated from the logic by bi-directional opto-couplers. The inputs are divided into 2 isolated groups of 8 inputs each. This allows for a number of configurations in which the input module may be used. One such configuration could be where one group is connected as common positive and the second group connected as common negative.

The counters operate in three modes: In **mode 0:** All the counters are disabled.

In **mode 1:** The counters are 32 bit counters allowing a count value from 0 to 4294967295. The count value can be cleared by writing a zero to the associated registers or preset to any other value using the same method.

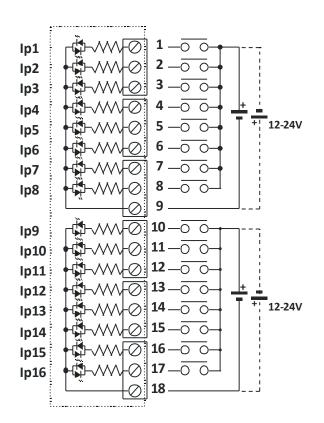
In **mode 2:** The inputs are connected as up/down counters. Input 1 will increment counter 1 whilst input 2 decrements counter1. In the same way, inputs 3&4 operate counter 2, inputs 5&6 operate counter 3 and inputs 7&8 operate counter 4, etc.

The format of the registers allows the status of the inputs to be read as either single bits or all at once as a single register on the Modbus network.


Power Supply	Logic Supply Voltage	12 -24 Vdc
	Logic Supply Current	39mA @ 12V / 22mA @ 24V
Digital Inputs	Input Points	16
	Input Voltage Range	12 - 24 Vdc
	Input Current per input	5mA @ 12Vdc / 11mA @ 24Vdc
	Isolation	1500Vrms between field and logic
Counters	Inputs	1 to 16
	Resolution	32 Bits
	Frequency	1KHz (max)
	Pulse Width	500us (min)
Temperature	Operating Temperature.	-20°C to + 70°C
	Storage Temperature	-40°C to + 85°C
Connectors	Logic Power and Comms.	5 way connector that clips onto DIN rail
	Inputs	6 x 3 Way screw connector on top and
		bottom

3.1.2 Technical Specification of PB16DI

Note: Inputs 1 to 16 are used as both digital inputs and counter inputs.


3.1.3 Status Indicators

Power:Flashes to indicate the CPU is running.RS485 Rx:Flashes to indicate the unit has received a valid Modbus message.RS485 Tx:Flashes to indicate the unit has sent a Modbus message.Input Status:"OFF" when the input is off.
"ON" when the input is on.

3.1.4 Wiring

The following diagram shows how the digital inputs are connected to potential free switches. The common can be connected to positive or negative as indicated.

3.1.5 PB16DI Data Registers (MODULE TYPE = 150)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
10001	Digital Input 1	0	1	R	Status of Digital Inputs.
10002	Digital Input 2	0	1	R	п
10003	Digital Input 3	0	1	R	п
10004	Digital Input 4	0	1	R	п
10005	Digital Input 5	0	1	R	п
10006	Digital Input 6	0	1	R	п
10007	Digital Input 7	0	1	R	
10008	Digital Input 8	0	1	R	
10009	Digital Input 9	0	1	R	
10010	Digital Input 10	0	1	R	U U
10011	Digital Input 11	0	1	R	п
10012	Digital Input 12	0	1	R	
10013	Digital Input 13	0	1	R	n.
10014	Digital Input 14	0	1	R	
10015	Digital Input 15	0	1	R	
10016	Digital Input 16	0	1	R	II
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 150
30002	Digital Inputs	N/A	N/A	R	Digital Inputs in 16 bits. 16 - 1.
40003	Counter 1 MSB	0	65535	R/W	Counter MSB and LSB combine to give a 32 bit
40004	Counter 1 LSB	0	65535	R/W	Counter with range 0 to 4294967295.
40005	Counter 2 MSB	0	65535	R/W	п
40006	Counter 2 LSB	0	65535	R/W	п
40007	Counter 3 MSB	0	65535	R/W	п
40008	Counter 3 LSB	0	65535	R/W	n
40009	Counter 4 LSB	0	65535	R/W	n
40010	Counter 4 LSB	0	65535	R/W	n
40011	Counter 5 MSB	0	65535	R/W	n
40012	Counter 5 LSB	0	65535	R/W	n
40013	Counter 6 MSB	0	65535	R/W	n
40014	Counter 6 LSB	0	65535	R/W	n
40015	Counter 7 MSB	0	65535	R/W	n
40016	Counter 7 LSB	0	65535	R/W	n
40017	Counter 8 MSB	0	65535	R/W	n
40018	Counter 8 LSB	0	65535	R/W	n
40019	Counter 9 MSB	0	65535	R/W	п
40020	Counter 9 LSB	0	65535	R/W	п
40021	Counter 10MSB	0	65535	R/W	п
40022	Counter 10LSB	0	65535	R/W	U U

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
40023	Counter 11MSB	0	65535	R/W	Counter MSB and LSB combine to give a 32 bit
40024	Counter 11LSB	0	65535	R/W	Counter with range 0 to 4294967295.
40025	Counter 12MSB	0	65535	R/W	п
40026	Counter 12LSB	0	65535	R/W	п
40027	Counter 13MSB	0	65535	R/W	п
40028	Counter 13LSB	0	65535	R/W	п
40029	Counter 14MSB	0	65535	R/W	п
40030	Counter 14LSB	0	65535	R/W	п
40031	Counter 15MSB	0	65535	R/W	п
40032	Counter 15LSB	0	65535	R/W	п
40033	Counter 16MSB	0	65535	R/W	п
40034	Counter 16LSB	0	65535	R/W	п
40035	Counter Capture	0	65535	R/W	Bit1 = 1 to Capture Counter1, Bit2 = 1 to Capture Counter2, etc.
40036	CCounter 1 MSB	0	65535	R/W	Capture Counter Registers. MSB and LSB
40037	CCounter 1 LSB	0	65535	R/W	combine to give a 32 bit Value.
40038	CCounter 2 MSB	0	65535	R/W	Counter with range 0 to 4294967295.
40039	CCounter 2 LSB	0	65535	R/W	
40040	CCounter 3 MSB	0	65535	R/W	п
40041	CCounter 3 LSB	0	65535	R/W	п
40042	CCounter 4 LSB	0	65535	R/W	п
40043	CCounter 4 LSB	0	65535	R/W	п
40044	CCounter 5 MSB	0	65535	R/W	п
40045	CCounter 5 LSB	0	65535	R/W	п
40046	CCounter 6 MSB	0	65535	R/W	п
40047	CCounter 6 LSB	0	65535	R/W	п
40048	CCounter 7 MSB	0	65535	R/W	п
40049	CCounter 7 LSB	0	65535	R/W	п
40050	CCounter 8 MSB	0	65535	R/W	п
40051	CCounter 8 LSB	0	65535	R/W	п
40052	CCounter 9 MSB	0	65535	R/W	п
40053	CCounter 9 LSB	0	65535	R/W	п
40054	CCounter 10MSB	0	65535	R/W	п
40055	CCounter 10LSB	0	65535	R/W	п
40056	CCounter 11MSB	0	65535	R/W	п
40057	CCounter 11LSB	0	65535	R/W	п
40058	CCounter 12MSB	0	65535	R/W	п
40059	CCounter 12LSB	0	65535	R/W	n n
40060	CCounter 13MSB	0	65535	R/W	п
40061	CCounter 13LSB	0	65535	R/W	п
40062	CCounter 14MSB	0	65535	R/W	п
40063	CCounter 14LSB	0	65535	R/W	п

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
40064	CCounter 15MSB	0	65535	R/W	11
40065	CCounter 15LSB	0	65535	R/W	11
40066	CCounter 16MSB	0	65535	R/W	11
40067	CCounter 16LSB	0	65535	R/W	11
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	Counter Mode	0	2	R/W	0=Disable, 1=Up Counting, 2=Up/Down Count
40102	Input Filter	0	65535	R/W	0 = Disable, >0 = Enable. (x10ms)
40103	Capture Zero	0	65535	R/W	0 = Disabled, bit1 = auto zero counter 1.
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 11520, 18750
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)

3.1.5.1 Digital Input Register.

The digital inputs can be read in a single register as follows:

	MSB				PB16DI DIGITAL INPUTS								LSB				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS	
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	30002	
16	15	14	13 :	12 1	1 10) 9	8	7	65	4	32	. 1					

Digital Input Number

3.1.5.2 Counter Registers.

The counters are stored as two 16 bit registers. The first register is the High Register and the second register is the Low Register. To get the actual 32 bit count value the registers must be combined as follows:

Counter High Value = Register 40003. Counter Low Value = Register 40004.

Counter Value = (Counter High Value X 65536) + Counter Low Value.

3.1.5.3 Counter Capture.

To capture a counter a 1 must be written to the corresponding bit position in the Counter Capture Register 40035. For example:

- 1. Writing 1 to Register 40035 results in Counter 1 value being captured to Counter Capture 1.
- 2. Writing 2 to Register 40035 results in Counter 2 value being captured to Counter Capture 2.
- 3. Writing 3 to Register 40035 results in Counter 1 value being captured to Counter Capture 1 and Counter 2 value being captured to Counter Capture 2.

Once the module has Captured the counters, the Counter Capture Register 40035 is cleared to zero. It is possible to read this register to get confirmation that the capture is complete before reading the captured counter values.

3.1.5.4 Counter Auto Zero.

The counter being captured can be auto zeroed. The purpose of this function is to let the module zero the counter so that no counts get lost due to delays from communication latency, etc.

To ensure that a counter is auto zeroed, a 1 must be written to the corresponding bit position in the Capture Zero Register 40103. For example:

Writing 1 to Register 40103 results in Counter 1 value being zeroed when the Counter Capture bit is 1.

The value in the Capture Zero Register 40103 is permanently stored in memory and only has to be configured once.

3.2 PB16DO - DIGITAL OUTPUTS

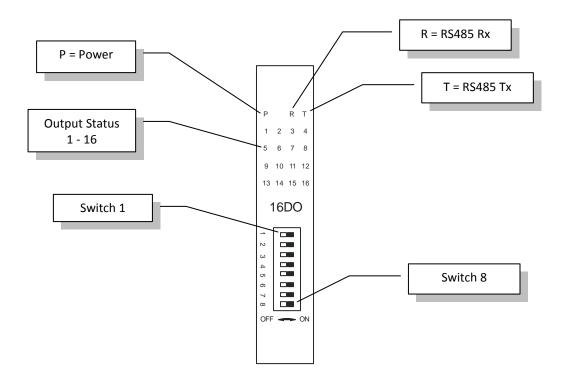
3.2.1 Description

This module has 16 open drain MOSFET (N-TYPE) digital outputs. The outputs may be used to drive lamps or external relays when more drive capability is required. The outputs are isolated from the logic and they share a common negative terminal. Each output is protected against over current and voltage.

The outputs are written to by the Modbus master device such as a PC or PLC. Each output can be individually switched on or off, or all outputs can be set up at the same time by writing a single number to the output register which represents the status of all outputs.

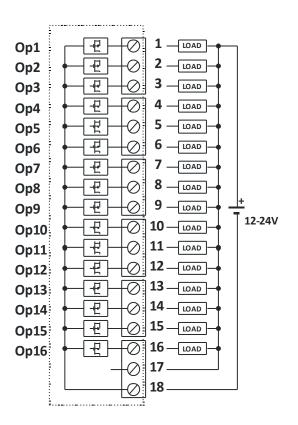
An output watchdog timer can be configured to switch off all the outputs if there has been no communications with the module for up to 255 seconds. A value of 0 seconds will disable this timer and the outputs will remain in the last programmed state.

Power Supply	Logic Supply Voltage	12 -24 Vdc					
	Logic Supply Current	39mA @ 12V / 22mA @ 24V					
	Field Supply Voltage	12 -24 Vdc					
	Field Supply Current	6mA @ 12V / 6mA @ 24V					
Digital Outputs	Output Points	16					
	Maximum Voltage	48 Vdc					
	Maximum Current	0.5A per output					
	On-state resistance	0.55 ohms					
	Output update rate	All outputs every 10ms					
	Isolation	1500Vrms between field and logic					
Temperature	Operating Temperature.	-20°C to + 70°C					
	Storage Temperature	-40°C to + 85°C					
Connectors	Logic Power and Comms.	5 way connector that clips onto DIN rail					
	Outputs	6 x 3 Way screw connector on top and					
		bottom					


3.2.2 Technical Specification of PB16DO

3.2.3 Status Indicators

Power: Flashes to indicate the CPU is running.


RS485 Rx:Flashes to indicate the unit has received a valid Modbus message.RS485 Tx:Flashes to indicate the unit has sent a Modbus message.Output Status:"OFF" when the output is off."OW" when the output is off.

"ON" when the output is on.

3.2.4 Wiring

The following diagram shows how the digital outputs are connected to the coil of a relay. The coil is connected to positive and switched to negative.

3.2.5 PB16DO Data Registers (MODULE TYPE = 151)

Modbus Address	Register Name	Low Limit	High Limit	Access	Comments			
00001	Digital Output 1	0	1	R/W	Status of Digital Outputs.			
00002	Digital Output 2	0	1	R/W	п			
00003	Digital Output 3	0	1	R/W	п			
00004	Digital Output 4	0	1	R/W	п			
00005	Digital Output 5	0	1	R/W	п			
00006	Digital Output 6	0	1	R/W	п			
00007	Digital Output 7	0	1	R/W	п			
00008	Digital Output 8	0	1	R/W	п			
00009	Digital Output 9	0	1	R/W	п			
00010	Digital Output 10	0	1	R/W	п			
00011	Digital Output 11	0	1	R/W	п			
00012	Digital Output 12	0	1	R/W	U			
00013	Digital Output 13	0	1	R/W	п			
00014	Digital Output 14	0	1	R/W	"			
00015	Digital Output 15	0	1	R/W	п			
00016	Digital Output 16	0	1	R/W	II			
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 151			
40002	Digital Outputs	N/A	N/A	R/W	Digital Outputs in bits. 16(msb) – 1(lsb).			
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel			
40101	Watchdog Timer	0	255	R/W	Timer in seconds. 0 = disabled. 1 - 255 = enabled.			
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 11520 18750			
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd			
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits			
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)			

3.2.5.1 Digital Output Register.

The digital outputs can be read/written in a single register as follows:

	MSB PB16DO DIGITAL OUTPUTS									LSB						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	40002
16	15	14	13	12 1	1 10) 9	8	7	65	4	3 2	2 1				

Digital Output

3.2.5.2 Output Watchdog Timer.

The watchdog timer is used to switch off all of the outputs in the event of a communications failure. When set to zero (register 40101) the watchdog timer is disabled.

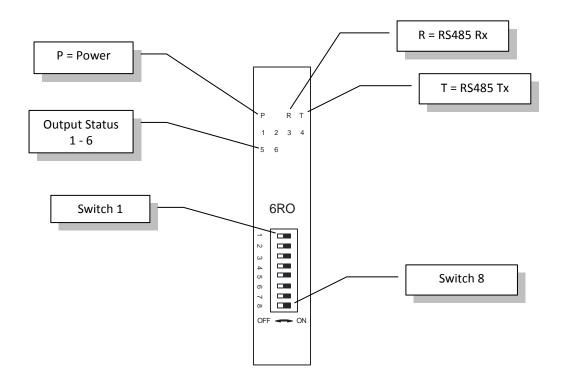
3.3 PB6RO - RELAY OUTPUTS

3.3.1 Description

The PB6RO module has 6 normally open/ normally closed relay outputs. These modules may be used when a higher drive capability is required, or when isolation between outputs are required.

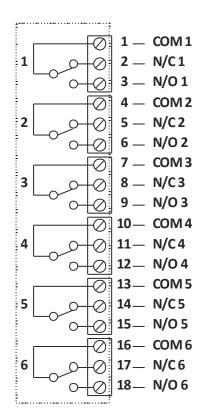
The outputs are written to by the Modbus master device such as a PC or PLC. Each output can be individually switched on or off, or all outputs can be set up at the same time by writing a single number to the output register which represents the status of all outputs.

An output watchdog timer can be configured to switch off all the outputs if there has been no communications with the module for up to 255 seconds. A value of 0 seconds will disable this timer and the outputs will remain in the last programmed state.


Power Supply	Logic Supply Voltage	24 Vdc
	Logic Supply Current	71 mA
Relay Outputs	Output Points	6
	Maximum Current	1A @ 220VAC / 1A @ 28VDC
	Output update rate	All outputs every 10ms
	Isolation	4000Vrms between field and logic
		1500Vrms between outputs
Temperature	Operating Temperature.	-20°C to + 70°C
	Storage Temperature	-40°C to + 85°C
Connectors	Logic Power and Comms.	5 way connector that clips onto DIN rail
	Outputs	6 x 3 Way screw connector on top and bottom

3.3.2 Technical Specification of PB6RO

3.3.3 Status Indicators


Power: Flashes to indicate the CPU is running.

RS485 Rx:Flashes to indicate the unit has received a valid Modbus message.RS485 Tx:Flashes to indicate the unit has sent a Modbus message.Output Status:"OFF" when the output is off
"ON" when the output is on.

3.3.4 Wiring

The following diagram shows how the relay contacts are connected to the wiring terminals.

Modbus Address	Register Name	Low Limit	High Limit	Access	Comments				
00001	Relay Output 1	0	1	R/W	Status of Relay Outputs.				
00002	Relay Output 2	0	1	R/W	n				
00003	Relay Output 3	0	1	R/W	n				
00004	Relay Output 4	0	1	R/W	п				
00005	Relay Output 5	0	1	R/W	п				
00006	Relay Output 6	0	1	R/W	n				
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 162				
40002	Relay Outputs	N/A	N/A	R/W	Relay Outputs in bits. xxxx xxxx xx6,5, 4,3,2,1 bit6(msb) – bit1(lsb).				
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel				
40101	Watchdog Timer	0	255	R/W	Timer in seconds. 0 = disabled. 1 - 255 = enabled.				
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 11520, 18750				
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd				
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits				
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)				

3.3.5 PB6RO Data Registers (MODULE TYPE = 162)

3.3.5.1 Relay Output Register.

The relay outputs can be read/written in a single register as follows:

	MSB				PB6RO DIGITAL OUTPUTS								LSB			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	40002
-	-		-	-	-	-		6	5	43	2	1				

Relay Output Number

3.3.5.2 Output Watchdog Timer.

The watchdog timer is used to switch off all of the outputs in the event of a communications failure. When set to zero (register 40101) the watchdog timer is disabled.

3.4 PB6DIO - DIGITAL INPUTS / OUTPUTS

3.4.1 Description

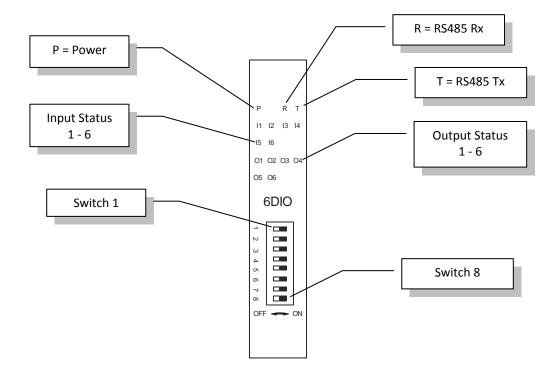
The PB6DIO module is an 6 channel digital input and 6 channel digital output module.

The inputs are isolated from the logic by bi-directional optocouplers. The inputs have internal counters associated with them. These counters are 32 bit counters allowing a count value from 0 to 4294967295. The count value can be cleared by writing a zero to the associated registers or preset to any other value using the same method.

The format of the registers allows the status of the inputs to be read as either single bits or all at once as a single register on the Modbus network.

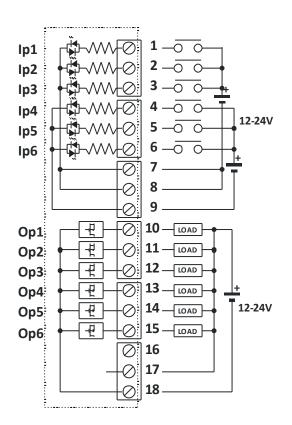
The 6 digital outputs are open drain MOSFET (N-TYPE). The outputs may be used to drive lamps or external relays when more drive capability is required. The outputs are isolated from the logic and they share a common negative terminal.

The outputs are written to by the Modbus master device such as a PC or PLC. Each output can be individually switched on or off, or all outputs can be set up at the same time by writing a single number to the output register which represents the status of all outputs.


Power Supply	Logic Supply Voltage	12 -24 Vdc
	Logic Supply Current	37mA @ 12V / 21mA @ 24V
	Field Supply Voltage	12 -24 Vdc
	Field Supply Current	6mA @ 12V / 6mA @ 24V
Digital Inputs	Input Points	6
	Input Voltage Range	12 -24 Vdc
	Input Current per input	5mA@12Vdc / 11mA @24Vdc
	Isolation	1500Vrms between field and logic
Digital Outputs	Output Points	6
	Maximum Voltage	48 Vdc
	Maximum Current	0.5A per output
	On-state resistance	0.55 ohms
	Output update rate	All outputs every 10ms
	Isolation	1500Vrms between field and logic
Counters	Inputs	1 to 6
	Resolution	32 Bits
	Frequency	1KHz (max)
	Pulse Width	500us (min)
Temperature	Operating Temperature.	-20°C to + 70°C
	Storage Temperature	-40°C to + 85°C
Connectors	Logic Power and Comms.	5 way connector that clips onto DIN rail
	Inputs/Outputs	6 x 3 Way screw connector on top and
		bottom

3.4.2 Technical Specification of PB6DIO

Note: Inputs 1 to 6 are used as both digital inputs and counter inputs.


3.4.3 Status Indicators

Power:	Flashes to indicate the CPU is running.
RS485 Rx:	Flashes to indicate the unit has received a valid Modbus message.
RS485 Tx:	Flashes to indicate the unit has sent a Modbus message.
Input Status:	"OFF" when the input is off
	"ON" when the input is on.
Output Status:	"OFF" when the output is off
	"ON" when the output is on.

3.4.4 Wiring

The following diagram shows how the digital inputs and outputs are connected.

3.4.5 PB6DIO Data Registers (MODULE TYPE = 152)

Modbus Address	Register Name	Low Limit	High Limit	Access	Comments
10001	Digital Input 1	0	1	R	Status of Digital Inputs.
10002	Digital Input 2	0	1	R	п
10003	Digital Input 3	0	1	R	п
10004	Digital Input 4	0	1	R	п
10005	Digital Input 5	0	1	R	п
10006	Digital Input 6	0	1	R	п
00017	Digital Output 1	0	1	R/W	Status of Digital Outputs.
00018	Digital Output 2	0	1	R/W	п
00019	Digital Output 3	0	1	R/W	n
00020	Digital Output 4	0	1	R/W	п
00021	Digital Output 5	0	1	R/W	п
00022	Digital Output 6	0	1	R/W	n
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 152
30002	Digital Inputs	N/A	N/A	R	Digital Inputs in lower 6 bits. 6 - 1.
40003	Digital Outputs	N/A	N/A	R/W	Digital Outputs in lower 6 bits. 6 - 1.
40004	Counter 1 MSB	0	65535	R/W	Counter MSB and LSB combine to give a 32 bit
40005	Counter 1 LSB	0	65535	R/W	Counter with range 0 to 4294967295.
40006	Counter 2 MSB	0	65535	R/W	п
40007	Counter 2 LSB	0	65535	R/W	п
40008	Counter 3 MSB	0	65535	R/W	п
40009	Counter 3 LSB	0	65535	R/W	п
40010	Counter 4 LSB	0	65535	R/W	п
40011	Counter 4 LSB	0	65535	R/W	п
40012	Counter 5 MSB	0	65535	R/W	n
40013	Counter 5 LSB	0	65535	R/W	п
40014	Counter 6 MSB	0	65535	R/W	п
40015	Counter 6 LSB	0	65535	R/W	n
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	Watchdog Timer	0	255	R/W	Timer in seconds. 0 = disabled. 1 - 255 = enabled.
40105	Counter Mode	0	2	R/W	0=Disable, 1=Up Counting, 2=Up/Down Count
40106	Input Filter	0	65535	R/W	0 = Disable, >0 = Enable. (x10ms)
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 11520, 18750
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)

3.4.5.1 Digital Input Register.

The digital inputs can be read in a single register as follows:

	MSB				PB6DI	o digi	TAL IN	PUTS					LSB			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	30002
0	0	0	0 0) (0 0	0	8	7 6	55	4	3 2	1				

Digital Input Number

3.4.5.2 Digital Output Register.

The digital outputs can be read/written in a single register as follows:

	MSB				PB6DIC	DIGI1	TAL OU	TPUTS	5				LSB			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	40003
0	0	0	0 0) (0 (0	8	7 (55	4	3 2	1				

Digital Output Number

3.4.5.3 Counter Registers.

The counters are stored a two 16 bit registers. The first register is the High Register and the second register is the Low Register. To get the actual 32 bit count value the registers must be combined as follows:

Counter High Value = Register 40003. Counter Low Value = Register 40004.

Counter Value = (Counter High Value X 65536) + Counter Low Value.

3.4.5.4 Output Watchdog Timer.

The watchdog timer is used to switch off all of the outputs in the event of a communications failure. When set to zero (register 40101) the watchdog timer is disabled.

3.5 PB8AII – ANALOG INPUTS (CURRENT)

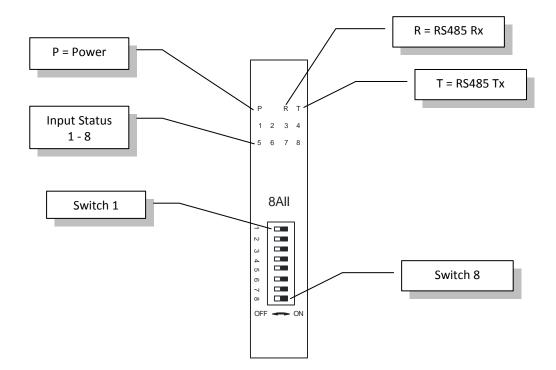
3.5.1 Description

The PB8AII is an eight channel 16 bit 0(4)-20mA input module. The inputs are isolated from the logic and share a common negative terminal.

The current input can be represented in a number of formats according to the type which is setup by writing a value to the Type register. The value is obtained from the table below.

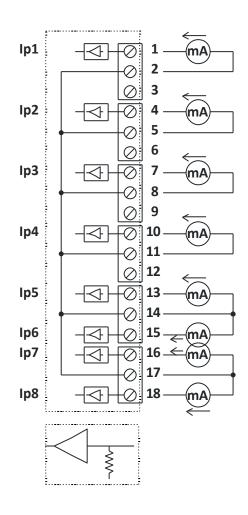
The standard setting for the PB8AII module is 0 - 20mA input current which represents an output value of 0 - 4095 (12 bits). 4 mA would give a reading of 819 ± 1 LSB.

The module can also be configured for a 0 - 20.000 mA input range and also supports 16 bit ranges.



3.5.2 Technical Specification of PB8AII

Power Supply	Logic Supply	Voltage	12 -24 Vdc				
	Logic Supply	Current	53mA @ 12V / 28mA @ 24V				
Current Inputs	Input Points		8				
	Input Curren	t	0(4) - 20 mA				
	Input Resista	ince	120ohms				
	InputType	Range	Resolution				
	1	0–20.000mA	12 bits				
	2	4–20.000mA	12 bits				
	3	0–20.000mA	16 bits				
	4	4–20.000mA	16 bits				
	5	0 - 20.000mA	1uA				
	Drift		50ppm/°C				
	Accuracy		0.2% of span				
	Input update	e rate	All inputs every 10ms				
	Isolation		1500Vrms between field and logic				
Temperature	Operating Te	emperature.	-20°C to + 70°C				
	Storage Tem	perature	-40°C to + 85°C				
Connectors	Logic Power	and Comms.	5 way connector that clips onto DIN rail				
	Inputs		6 x 3 Way screw connector on top and				
			bottom				


3.5.3 Status Indicators

Power:Flashes to indicate the CPU is running.RS485 Rx:Flashes to indicate the unit has received a valid Modbus message.RS485 Tx:Flashes to indicate the unit has sent a Modbus message.Input Status:"ON" when the input is zero.
"OFF" when the input is greater than zero and less than 20mA.
"Flashing" when the input is over range, greater or equal to 20mA.

3.5.4 Wiring

The following diagram shows how the analog inputs are connected to a 0(4)-20mA source. All of the common terminals are connected together, and are connected to 0V internally.

3.5.5 Module Calibration

To calibrate an input, perform the following steps:

- 1. Run IOStudio on a PC to easily access the Modbus registers used for calibration.
- 2. Connect a 20mA current source to the input to be calibrated. Set to 0.000mA.
- 3. Write the channel number into the "Calibrate Channel Number" register 40018.
- 4. Allow the input to settle for a few seconds. Monitor the "Calibrate Raw Data" input register 30016 to check that the data has settled.
- 5. Write the value 1 into the "Calibrate Control Data" output register 40017 to save the zero value.
- 6. Set the input to 20.000mA and allow the input to settle for a few seconds.
- 7. Write the value 2 into the "Calibrate Control Data" output register 40017 to save the span value.
- 8. Check that the "Analog Input x" input register shows 4095 or 65536 or 20000 depending on the input type.
- 9. Repeat the steps for the remaining channels.

3.5.6 PB8AII Data Registers (MODULE TYPE = 153)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 153
30002	Analog Input 1	0	65535	R	Analog Input 16 Bits
30003	Analog Input 2	0	65535	R	п
30004	Analog Input 3	0	65535	R	n
30005	Analog Input 4	0	65535	R	n
30006	Analog Input 5	0	65535	R	п
30007	Analog Input 6	0	65535	R	п
30008	Analog Input 7	0	65535	R	п
30009	Analog Input 8	0	65535	R	п
30010	Input Status	0	65535	R	bit2 = 0(open circuit or < 2), bit2 = 1(over range) bit1 = 0(OK),bit1 = 1(input < 2mA)
30016	Calibrate Raw Data	0	65535	R	Raw data used to verify that the data has settled during calibration.
40017	Calibrate Control	0	2	R/W	Used to step through the calibration sequence.
40018	Calibrate Channel	1	8	R/W	Enter the channel number to be calibrated.
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	Input 1 Type	1	5	R/W	See specification table.
40102	Input 2 Type	1	5	R/W	See specification table.
40103	Input 3 Type	1	5	R/W	See specification table.
40104	Input 4 Type	1	5	R/W	See specification table.
40105	Input 5 Type	1	5	R/W	See specification table.
40106	Input 6 Type	1	5	R/W	See specification table.
40107	Input 7 Type	1	5	R/W	See specification table.
40108	Input 8 Type	1	5	R/W	See specification table.
40111	Input 1 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40112	Input 2 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40113	Input 3 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40114	Input 4 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40115	Input 5 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40116	Input 6 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40117	Input 7 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40118	Input 8 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 11520, 18750
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)

3.5.6.1 Analog Input Registers.

	MSB				PB8A	I ANAI	LOG IN	PUTS					LSB			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	300XX
0	0	0	0 >	< x	х	х	x	x x	х	x	x x	x				
						Ana	alog In	put: 12	2 Bit V	alue (0 - 409	95)				
x	х	х	x x	x	х	х	x	x x	х	хх	x	х				

The analog inputs are read as a 16 bit value in the registers as follows:

Analog Input: 16 Bit Value (0 - 65535)

3.5.6.2 Analog Input Status.

There are two status bits associated with each analog input. These bits are used to indicate if the input is zero or open circuit, in the working range 0-65535, or over range. If the input is open circuit or over range, then the error bit will be set. When the error bit is set, the range bit is zero if the input is open circuit and set if the input is over range, ie:

Bit 1- Error	Bit 2-Range	<u>Condition</u>	Status LED
0	don't care	Input working OK.	(LED OFF)
1	0	Input Open circuit (<3mA) or zero	(LED ON)
1	1	Input Over range.	(LED FLASH)

The analog input status can be read in a single register as follows:

	MSB			P	B8AI AI	NALOG	INPUT	STATU	JS				LSB			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	30010
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2		30010 IP1 Frror IP1 Range IP2 Frror IP2 Range IP3 Error IP3 Range IP4 Error
																IP4 Range IP5 Error IP5 Range
																IP6 Error IP6 Range IP7 Frror
																IP7 Range
																IP8 Error
																IP8 Range

3.6 PB8AIV – VOLTAGE ANALOG INPUTS

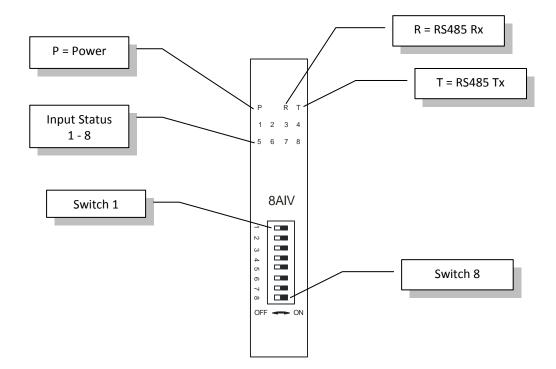
3.6.1 Description

The PB8AIV is an eight channel 16 bit 0-10V input module. The inputs are isolated from the logic and share a common negative terminal.

The voltage input can be represented in a number of formats according to the type which is setup by writing a value to the Type register. The value is obtained from the table below.

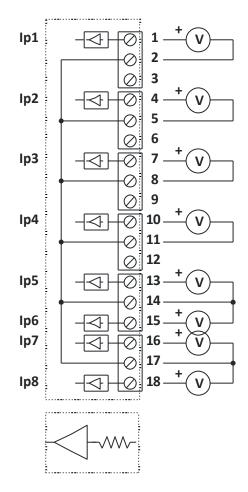
The standard setting for the PB8AIV module is 0 - 10V input voltage which represents an output value of 0 - 4095 (12 bits). An input of 2V would give a reading of 819 ± 1 LSB.

The module can also be configured for a 0 - 10.000V input range and also supports 16 bit ranges.



Power Supply	Logic Supply	Voltage	12 -24 Vdc					
	Logic Supply	Current	53mA @ 12V / 28mA @ 24V					
Voltage Inputs	Input Points		8					
	Input Voltage	е	0(2) - 10 Vdc or 0(1) - 5 Vdc					
	Input Resista	ince	43kohms					
	InputType	Range	Resolution					
	1	0 – 10.000 V	12 bits					
	2	0 – 10.000 V	16 bits					
	3	0 – 10.000 V	1mV					
	Drift		50ppm/°C					
	Accuracy		0.2% of span					
	Input update	e rate	All inputs every 10ms					
	Isolation		1500Vrms between field and logic					
Temperature	Operating Te	emperature.	-20°C to + 70°C					
	Storage Tem	perature	-40°C to + 85°C					
Connectors	Logic Power	and Comms.	5 way connector that clips onto DIN rail					
	Inputs		6 x 3 Way screw connector on top and					
			bottom					

3.6.2 Technical Specification of PB8AIV


3.6.3 Status Indicators

Power:Flashes to indicate the CPU is running.RS485 Rx:Flashes to indicate the unit has received a valid Modbus message.RS485 Tx:Flashes to indicate the unit has sent a Modbus message.Input Status:"ON" when the input is zero."OFF" when the input is greater than zero and less than 10V."Flashing" when the input is over range, greater or equal to 10V.

3.6.4 Wiring

The following diagram shows how the analog inputs are connected to a 0(2)-10Vdc source. All of the common terminals are connected together, and are connected to 0V internally.

3.6.5 Module Calibration

To calibrate an input, perform the following steps:

- 1. Run IOStudio on a PC to easily access the Modbus registers used for calibration.
- 2. Connect a 10V voltage source to the input to be calibrated. Set to 0.000V.
- 3. Write the channel number into the "Calibrate Channel Number" register 40018.
- 4. Allow the input to settle for a few seconds. Monitor the "Calibrate Raw Data" input register 30016 to check that the data has settled.
- 5. Write the value 1 into the "Calibrate Control Data" output register 40017 to save the zero value.
- 6. Set the input to 10.000V and allow the input to settle for a few seconds.
- 7. Write the value 2 into the "Calibrate Control Data" output register 40017 to save the span value.
- 8. Check that the "Analog Input x" input register shows 4095 or 65536 or 10000 depending on the input type.
- 9. Repeat the steps for the remaining channels.

3.6.6 PB8AIV Data Registers (MODULE TYPE = 154)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 154
30002	Analog Input 1	0	65535	R	Analog Input 16 Bits
30003	Analog Input 2	0	65535	R	n
30004	Analog Input 3	0	65535	R	п
30005	Analog Input 4	0	65535	R	п
30006	Analog Input 5	0	65535	R	п
30007	Analog Input 6	0	65535	R	п
30008	Analog Input 7	0	65535	R	п
30009	Analog Input 8	0	65535	R	п
30010	Input Status	0	65535	R	bit2 = 0(open circuit or < 2), bit2 = 1(over range) bit1 = 0(OK),bit1 = 1(input < 1V)
30016	Calibrate Raw Data	0	65535	R	Raw data used to verify that the data has settled during calibration.
40017	Calibrate Control	0	2	R/W	Used to step through the calibration sequence.
40018	Calibrate Channel	1	8	R/W	Enter the channel number to be calibrated.
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	Input 1 Type	1	5	R/W	See specification table.
40102	Input 2 Type	1	5	R/W	See specification table.
40103	Input 3 Type	1	5	R/W	See specification table.
40104	Input 4 Type	1	5	R/W	See specification table.
40105	Input 5 Type	1	5	R/W	See specification table.
40106	Input 6 Type	1	5	R/W	See specification table.
40107	Input 7 Type	1	5	R/W	See specification table.
40108	Input 8 Type	1	5	R/W	See specification table.
40111	Input 1 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40112	Input 2 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40113	Input 3 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40114	Input 4 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40115	Input 5 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40116	Input 6 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40117	Input 7 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40118	Input 8 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 11520, 18750
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)

3.6.6.1 Analog Input Registers.

	MSB			PB8AI ANALOG INPUTS									LSB					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS		
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	300XX		
0	0	0	0 x	x	x	х	x	x x	х	x x	x	x						
						Ana	log Inp	out: 12	Bit Va	alue (0	- 409	5)						
x	x	x	x x	x	x	x	x	x x	x	x x	x	x						

The analog inputs are read as a 12 bit value in the registers as follows:

Analog Input: 16 Bit Value (0 - 65535)

3.6.6.2 Analog Input Status.

There are two status bits associated with each analog input. These bits are used to indicate if the input is zero or open circuit, in the working range 0-65535, or over range. If the input is open circuit or over range, then the error bit will be set. When the error bit is set, the range bit is zero if the input is open circuit and set if the input is over range, ie:

<u>Bit 1- Error</u>	Bit 2-Range	<u>Condition</u>	Status LED
0	don't care	Input working OK.	(LED OFF)
1	0	Input Open circuit (<1V) or zero.	(LED ON)
1	1	Input Over range.	(LED FLASH)

The analog input status can be read in a single register as follows:

	MSB			Р	B8AI AI	NALOG	INPUT	STATL	JS				LSB			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	30010
																IP1 Frror IP1 Range IP2 Frror IP2 Range IP3 Error IP3 Range IP4 Error IP5 Error IP5 Range IP5 Range IP6 Range IP7 Frror IP7 Range

3.7 PB6AIIS - ISOLATED CURRENT ANALOG INPUTS

3.7.1 Description

The PB6AIIS is a six channel 16 bit 0(4)-20mA input module. The inputs are fully isolated from input to logic and between inputs. This module is ideal for monitoring existing 4-20mA current loops which are isolated from each other and cannot be connected to a common point of reference.

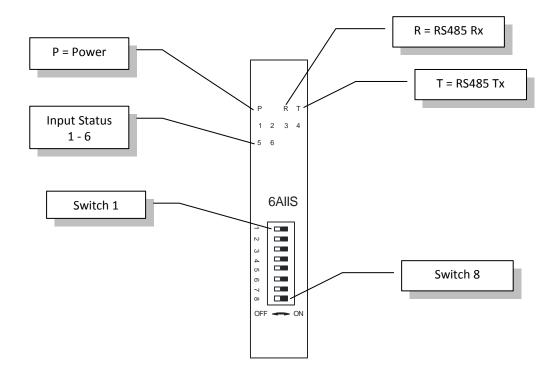
The standard setting for the PB6AIIS module is 0 - 20mA input current which represents an output value of 0 - 4095 (12 bits) in the corresponding Modbus register. To obtain an output value of 0 to 4095 for an input signal of 4 to 20mA the input type must be programmed into the Modbus registers. This module can also be configured for a 0 – 20.000mA input range or +/- 20.000mA input. The module also supports 16 bit ranges.

Power Supply	Logic Supply	Voltage	12 -24 Vdc					
	Logic Supply	Current	86mA @ 12V / 45mA @ 24V					
Current Inputs	Input Points		6					
	Input Curren	t	0(4) - 20 mA					
	Input Resista	nce	22 ohms					
	InputType	Range	Resolution					
	1	0–20.000mA	12 bits					
	2	4–20.000mA	12 bits					
	3	0–20.000mA	16 bits					
	4	4–20.000mA	16 bits					
	5 0 - 20.000mA 1uA							
	6	+/- 20.000mA	1uA					
	Drift		100ppm/°C					
	Input update	rate	No. of inputs enabled X 180ms					
			eg: All inputs enabled 6 x 180 = 1080ms					
			eg: 1 input enabled 1 x 180 = 180ms					
	Isolation		1500Vrms between field and logic					
			350Vpeak between each input					
Temperature	Operating Te	mperature.	-20°C to + 70°C					
	Storage Tem	perature	-40°C to + 85°C					
Connectors	Logic Power	and Comms.	5 way connector that clips onto DIN rail					
	Inputs		6 x 3 Way screw connector on top and					
			bottom					

3.7.2 Technical Specification of PB6AIIS

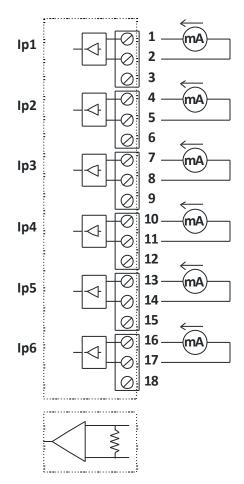
3.7.3 Status Indicators

Power: Flashes to indicate the CPU is running.


RS485 Rx: Flashes to indicate the unit has received a valid Modbus message.

RS485 Tx: Flashes to indicate the unit has sent a Modbus message.

Input Status: "ON" when the input is zero.


"OFF" when the input is greater than zero and less than 20mA.

"Flashing" when the input is over range, greater or equal to 20mA.

3.7.4 Wiring

The following diagram shows how the analog inputs are connected to a 0(4)-20mA source. All of the common terminals are isolated from each other.

3.7.5 Module Calibration

To calibrate an input, perform the following steps:

- 10. Run IOStudio on a PC to easily access the Modbus registers used for calibration.
- 11. Connect a 20mA current source to the input to be calibrated. Set to 0.000mA.
- 12. Write the channel number into the "Calibrate Channel Number" register 40018.
- 13. Allow the input to settle for a few seconds. Monitor the "Calibrate Raw Data" input register 30016 to check that the data has settled.
- 14. Write the value 1 into the "Calibrate Control Data" output register 40017 to save the zero value.
- 15. Set the input to 20.000mA and allow the input to settle for a few seconds.
- 16. Write the value 2 into the "Calibrate Control Data" output register 40017 to save the span value.
- 17. Check that the "Analog Input x" input register shows 4095 or 65536 or 20000 depending on the input type.
- 18. Repeat the steps for the remaining channels.

3.7.6 PB6AIIS Data Registers (TYPE = 157)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description			
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 157			
30002	Analog Input 1	0	65535	R	Analog Input 16 Bits			
30003	Analog Input 2	0	65535	R	11			
30004	Analog Input 3	0	65535	R	п			
30005	Analog Input 4	0	65535	R	п			
30006	Analog Input 5	0	65535	R	п			
30007	Analog Input 6	0	65535	R	И			
30010	Input Status	0	65535	R	bit2 = 0(open circuit or < 2), bit2 = 1(over range) bit1 = 0(OK),bit1 = 1(error)			
30016	Calibrate Raw Data	0	65535	R	Raw data used to verify that the data has settled during calibration.			
40017	Calibrate Control	0	2	R/W	Used to step through the calibration sequence.			
40018	Calibrate Channel	1	6	R/W	Enter the channel number to be calibrated.			
30100	DIP Switch	0	255	R	Status of DIP Switch on Front Panel			
40101	Input 1 Type	1	5	R/W	See specification table.			
40102	Input 2 Type	1	5	R/W	See specification table.			
40103	Input 3 Type	1	5	R/W	See specification table.			
40104	Input 4 Type	1	5	R/W	See specification table.			
40105	Input 5 Type	1	5	R/W	See specification table.			
40106	Input 6 Type	1	5	R/W	See specification table.			
40111	Input 1 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40112	Input 2 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40113	Input 3 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40114	Input 4 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40115	Input 5 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40116	Input 6 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40119	Line Frequency	50	60	R/W	Line Frequency			
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 11520, 18750			
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd			
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits			
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)			

3.7.6.1 Analog Input Registers.

	MSB			PB8AI ANALOG INPUTS								LSB						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS		
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	300XX		
0	0	0	0 x	x	x	x	x	x x	x	x x	x	x						
						Ana	log Inp	ut: 12	Bit Va	alue (0	- 409	5)						
x	x	x	x x	x	x	х	x	x x	x	x x	х	x						

The analog inputs are read as a 16 bit value in the registers as follows:

Analog Input: 16 Bit Value (0 - 65535)

3.7.6.2 Analog Input Status.

There are two status bits associated with each analog input. These bits are used to indicate if the input is zero or open circuit, in the working range 0-4095, or over range. If the input is open circuit or over range, then the error bit will be set. When the error bit is set, the range bit is zero if the input is open circuit and set if the input is over range, ie:

Bit 1- Error	Bit 2-Range	<u>Condition</u>	Status LED
0	don't care	Input working OK.	(LED OFF)
1	0	Input Open circuit (<3mA) or zero	(LED ON)
1	1	Input Over range.	(LED FLASH)

The analog input status can be read in a single register as follows:

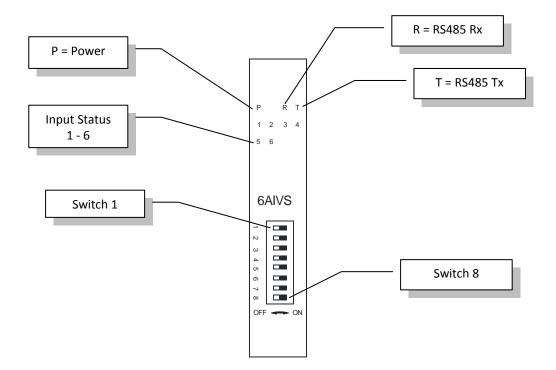
	MSB			P	B8AI A	NALOG	INPUT	STAT	US				LSB	}		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	30010
																IP1 Frror IP1 Range IP2 Frror IP2 Range IP3 Error IP3 Range IP4 Error IP5 Error IP5 Range IP5 Range IP6 Error IP6 Range IP7 Frror IP7 Range IP8 Error IP8 Range

3.8 PB6AIVS - ISOLATED VOLTAGE ANALOG INPUTS

3.8.1 Description

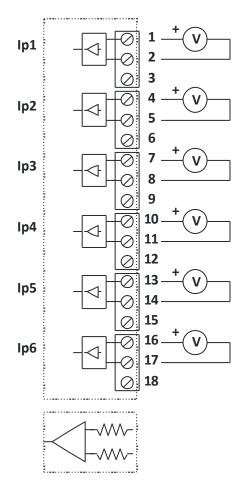
The PB6AIVS is a six channel 16 bit 0-10V input module. The inputs are fully isolated from input to logic and between inputs. This module is ideal for monitoring existing 0-10V circuits which are isolated from each other and cannot be connected to a common point of reference.

The standard setting for the PB6AIVS module is 0 - 10Vinput voltage which represents an output value of 0 - 4095(12 bits) in the corresponding Modbus register. This module can also be configured for a 0 - 10.000V input range or +/-10.000V input. The module also supports 16 bit ranges.



Power Supply	Logic Supply	Voltage	12 -24 Vdc				
	Logic Supply	Current	86mA @ 12V / 45mA @ 24V				
Voltage Inputs – PB8AI/V ISO	Input Points		6				
	Input Voltag	e	0 - 10 Vdc				
	Input Resista	ince	110 Kohms				
	InputType	Range	Resolution				
	1	0 – 4095	12 bits				
	2	0 - 65535	16 bits				
	3	0 – 10.000 V	1mV				
	4	+/- 10.000 V	1mV				
	5	0 – 1.0000 V	0.1mV				
	6	+/- 1.0000 V	0.1mV				
	Drift		100ppm/°C				
	Input update	e rate	No. of inputs enabled X 180ms				
			eg: All inputs enabled 6 x 180 = 1080ms				
			eg: 1 input enabled 1 x 180 = 180ms				
	Isolation		1500Vrms between field and logic				
			350Vpeak between each input				
Temperature	Operating Te	emperature.	-20°C to + 70°C				
	Storage Tem	perature	-40°C to + 85°C				
Connectors	Logic Power	and Comms.	5 way connector that clips onto DIN rail				
	Inputs		6 x 3 Way screw connector on top and				
			bottom				
			bottom				

3.8.2 Technical Specification of PB8AIVS


3.8.3 Status Indicators

Power:Flashes to indicate the CPU is running.RS485 Rx:Flashes to indicate the unit has received a valid Modbus message.RS485 Tx:Flashes to indicate the unit has sent a Modbus message.Input Status:"ON" when the input is zero."OFF" when the input is greater than zero and less than 10V."Flashing" when the input is over range, greater or equal to 10V.

3.8.4 Wiring

The following diagram shows how the analog inputs are connected to a 0-10Vdc source. All of the input circuits are isolated from each other.

3.8.5 Module Calibration

To calibrate an input, perform the following steps:

- 1. Run IOStudio on a PC to easily access the Modbus registers used for calibration.
- 2. Connect a 10V voltage source to the input to be calibrated. Set to 0.000V.
- 3. Write the channel number into the "Calibrate Channel Number" register 40018.
- 4. Allow the input to settle for a few seconds. Monitor the "Calibrate Raw Data" input register 30016 to check that the data has settled.
- 5. Write the value 1 into the "Calibrate Control Data" output register 40017 to save the zero value.
- 6. Set the input to 10.000V and allow the input to settle for a few seconds.
- 7. Write the value 2 into the "Calibrate Control Data" output register 40017 to save the span value.
- 8. Check that the "Analog Input x" input register shows 4095 or 65536 or 10000 depending on the input type.
- 9. Repeat the steps for the remaining channels.

3.8.6 PB6AIVSData Registers (TYPE = 158)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description			
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 158			
30002	Analog Input 1	0	65535	R	Analog Input 16 Bits			
30003	Analog Input 2	0	65535	R	п			
30004	Analog Input 3	0	65535	R	п			
30005	Analog Input 4	0	65535	R	п			
30006	Analog Input 5	0	65535	R	п			
30007	Analog Input 6	0	65535	R	п			
30010	Input Status	0	65535	R	bit2 = 0(open circuit or < 2), bit2 = 1(over range) bit1 = 0(OK),bit1 = 1(error)			
30016	Calibrate Raw Data	0	65535	R	Raw data used to verify that the data has settled during calibration.			
40017	Calibrate Control	0	2	R/W	Used to step through the calibration sequence.			
40018	Calibrate Channel	1	6	R/W	Enter the channel number to be calibrated.			
30100	DIP Switch	0	255	R	Status of DIP Switch on Front Panel			
40101	Input 1 Type	1	5	R/W	See specification table.			
40102	Input 2 Type	1	5	R/W	See specification table.			
40103	Input 3 Type	1	5	R/W	See specification table.			
40104	Input 4 Type	1	5	R/W	See specification table.			
40105	Input 5 Type	1	5	R/W	See specification table.			
40106	Input 6 Type	1	5	R/W	See specification table.			
40111	Input 1 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40112	Input 2 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40113	Input 3 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40114	Input 4 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40115	Input 5 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40116	Input 6 Enable	0	1	R/W	0 = Enable, 1 = Disable.			
40119	Line Frequency	50	60	R/W	Line Frequency			
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 11520, 18750			
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd			
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits			
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)			

3.8.6.1 Analog Input Registers.

	MSB			PB8AI ANALOG INPUTS								LSB						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS		
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	300XX		
0	0	0	0 x	x	x	x	x	x x	x	x x	x	x						
						Ana	log Inp	ut: 12	Bit Va	alue (0	- 409	5)						
x	x	x	x x	x	x	х	x	x x	x	x x	х	x						

The analog inputs are read as a 16 bit value in the registers as follows:

Analog Input: 16 Bit Value (0 - 65535)

3.8.6.2 Analog Input Status.

There are two status bits associated with each analog input. These bits are used to indicate if the input is zero or open circuit, in the working range 0-4095, or over range. If the input is open circuit or over range, then the error bit will be set. When the error bit is set, the range bit is zero if the input is open circuit and set if the input is over range, ie:

Bit 1- Error	Bit 2-Range	<u>Condition</u>	Status LED
0	don't care	Input working OK.	(LED OFF)
1	0	Input Open circuit or zero	(LED ON)
1	1	Input Over range.	(LED FLASH)

The analog input status can be read in a single register as follows:

	MSB			P	B8AI A	NALOG	INPUT	STAT	JS				LSB			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	30010
																IP1 Frror IP1 Range IP2 Frror IP2 Range IP3 Error IP3 Range IP4 Error IP4 Range IP5 Error IP5 Range IP6 Error IP6 Range IP7 Frror IP7 Range IP8 Error IP8 Range

3.9 PB6TCS - ISOLATED THERMOCOUPLE INPUTS

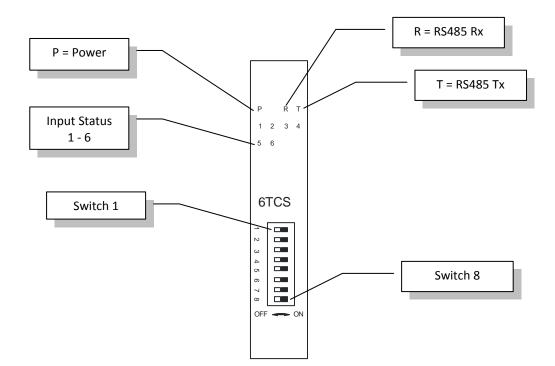
3.9.1 Description

The PB6TCS module is a 6 isolated thermocouple input module. The module uses differential inputs to reduce effects of electrical noise and mains pickup. The thermocouple inputs are isolated from the logic and from each other.

The thermocouple voltage is read by the module circuitry, linearised and converted to degrees Centigrade. No ranging is required as the module covers the full range as indicated in the TC table. The value that is read from the Modbus register is the actual temperature in degrees centigrade to 0.1°C resolution. ie: a value of 3451 corresponds to a temperature of 345.1°C.

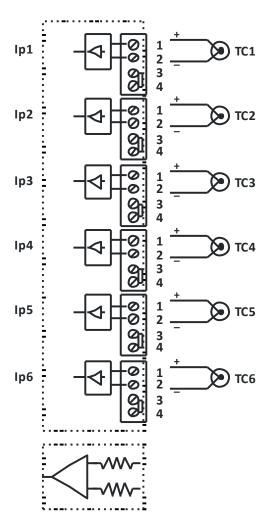
The thermocouple type is setup by writing a value to the TC Type register. The value is obtained from the table below. For example to select type K thermocouples, the value "2" must be written to the TC Type register. Each thermocouple channel can be individually enabled/disabled and configured with the thermocouple type.

The module has built in Cold Junction Compensation. Use must be made of the correct thermocouple extension wire to avoid reading errors.


The thermocouple module can also be configured for a 0 - 50mV or +/- 100mV input range.

3.9.2 Technical Specification of PB6TCS

Power Supply	Logic Supply V		12 -24 Vdc					
	Logic Supply C	urrent	86mA @ 12V / 45mA @ 24V					
TC Inputs	Input Points		6					
	Resolution		0.1°C					
	Drift		100ppm/°C Typ.					
	Input update	rate	(No. of inputs enable	ed + 1) X 180ms				
			eg: All inputs enable	d				
			(6 + 1) x 180 = 12	60ms				
			eg: 1 input enabled ((1+1) x 180 = 360ms				
	Isolation		1500Vrms between	field and logic				
			350Vpeak between each TC input					
ТС Туре	Number	Туре	Range	Accuracy				
	1	J	-150 to 760 °C	0.2°C				
	2	К	-200 to 1370 °C	0.3°C				
	3	E	-200 to 1000 °C	0.1°C				
	4	Т	-200 to 400 °C	0.3°C				
	5	N	0 to 1300 °C	0.3°C				
	6	В	400 to 1820 °C	0.5°C				
	7	S	-50 to 1767 °C	0.6°C				
	8	R	-50 to 1767 °C	0.7°C				
	9	mV	0 to 50mV	0.1%				
	10	C	0 to 2315.5 °C	0.7°C				
	11	D	0 to 2315.5 °C	0.7°C				
	12	G	0 to 2315.5 °C	0.9°C				
	13	m V	+/- 100mV	0.1%				
Cold Junction	CJC Error		Less than 1°C Typ. after 60 minutes					
			warm up time.					
Temperature	Operating Ter	nperature.	-20°C to + 70°C					
	Storage Temp	erature	-40°C to + 85°C					
Connectors	Logic Power a	nd Comms.	5 way connector tha	t clips onto DIN rail				
	Inputs		6 x 4 Way screw connector on top and					
			bottom with CJC sensor.					


3.9.3 Status Indicators

Power:Flashes to indicate the CPU is running.RS485 Rx:Flashes to indicate the unit has received a valid Modbus message.RS485 Tx:Flashes to indicate the unit has sent a Modbus message.Input Status:"ON" when the thermocouple is open circuit.
"OFF" when the thermocouple is connected.

3.9.4 Wiring

The following diagram shows how the inputs are connected to a thermocouple.

3.9.5 Module Calibration

To calibrate an input, perform the following steps:

- 1. Run IOStudio on a PC to easily access the Modbus registers used for calibration.
- 2. Power up the module and let it settle for 30 minutes.
- 3. Connect a mV voltage source to input 1. Set to 0.000mV.
- 4. Allow the input to settle for a few seconds. Monitor the "Calibrate Raw Data" input register 30016 to check that the data has settled.
- 5. Write the value 1 into the "Calibrate Control Data" output register 40017 to save the zero value.
- 6. Set the input to 60.000mV and allow the input to settle for a few seconds.
- 7. Write the value 2 into the "Calibrate Control Data" output register 40017 to save the span value.
- 8. Check that the input 1 register shows 60000 when the input type is set to Type 9.

3.9.6 PB6TCS Data Registers (MODULE TYPE = 156)

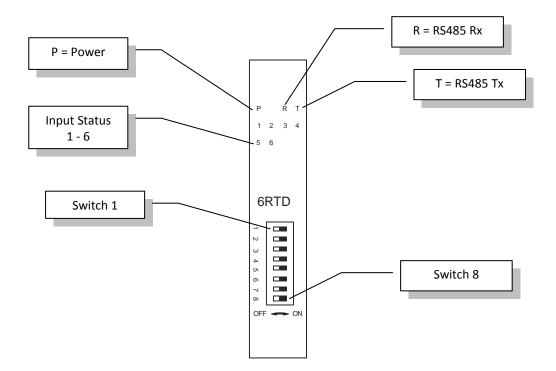
Modbus Address			Description				
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 156		
30002	TC Input 1	-xxx.x	уууу.у	R	Thermocouple Inputs. See table for range.		
30003	TC Input 2	-xxx.x	уууу.у	R	Resolution in 0.1°C.		
30004	TC Input 3	-xxx.x	уууу.у	R	п		
30005	TC Input 4	-xxx.x	уууу.у	R	п		
30006	TC Input 5	-xxx.x	уууу.у	R	п		
30007	TC Input 6	-xxx.x	уууу.у	R	п		
30010	CJC Temp.	-xxx.x	уууу.у	R	CJC Temperature in 0.1°C resolution.		
30011	Input Status	0	65535	R	bit1 = 0(OK),bit1 = 1(error or open circuit)		
30016	Calibrate Raw Data	0	65535	R	Raw data used to verify that the data has settled during calibration.		
40017	Calibrate Control	0	2	R/W	Used to step through the calibration sequence.		
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel		
40101	TC 1 Type	1	13	R/W	See TC Tables.		
40102	ТС 2 Туре	1	13	R/W	See TC Tables.		
40103	ТС 3 Туре	1	13	R/W	See TC Tables.		
40104	TC 4 Type	1	13	R/W	See TC Tables.		
40105	TC 5 Type	1	13	R/W	See TC Tables.		
40106	ТС 6 Туре	1	13	R/W	See TC Tables.		
40107	Input 1 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40108	Input 2 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40109	Input 3 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40110	Input 4 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40111	Input 5 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40112	Input 6 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40113	CJC Offset 1	1	199	R/W	100 = zero offset (0.0)		
40114	CJC Offset 2	1	199	R/W	100 = zero offset (0.0)		
40115	CJC Offset 3	1	199	R/W	100 = zero offset (0.0)		
40116	CJC Offset 4	1	199	R/W	100 = zero offset (0.0)		
40117	CJC Offset 5	1	199	R/W	100 = zero offset (0.0)		
40118	CJC Offset 6	1	199	R/W	100 = zero offset (0.0)		
40119	Line Frequency	50	60	R/W	Line Frequency		
40120	Units Type	1	2	R/W	1=°C, 2=°F		
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 115200, 187500		
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd		
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits		
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)		

3.10.1 Description

The PB6RTD module is a 6 RTD input module. The module can accommodate either 2 or 3 wire RTD sensors. The RTD inputs are isolated from the logic.

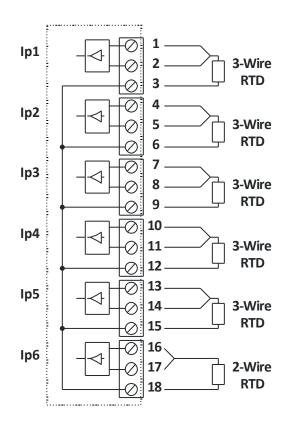
The RTD resistance is read by the module circuitry, linearised and converted to degrees Centigrade. No ranging is required as the module covers the full range of the RTD as indicated in the RTD table. The value that is read from the Modbus register is the actual temperature in degrees centigrade to 0.1°C resolution. ie: a value of 3451 corresponds to a temperature of 345.1°C.

The RTD type is setup by writing a value to the RTD Type register. The value is obtained from the table below. For example to select a PT100 RTD, the value "1" must be written to the RTD Type register. Each RTD input can be disabled/enabled and the RTD type can be individually configured.


Note: As there is no inter-channel isolation, isolated RTD's must be used in order to prevent ground loops and reading errors.

3.10.2 Technical Specification of PB6RTD

Power Supply	Logic Supply \	/oltage	12 -24 Vdc				
	Logic Supply (Current	83mA @ 12V / 43mA @ 24V				
RTD Inputs	Input Points		6				
	RTD Configura	ation	2 or 3 Wire				
	Resolution		0.1°C				
	Drift		100ppm/°C Typ.				
	Line resistanc	e effect	< 0.1°C balanced				
	Max. line resi	stance	100ohms				
	Input update	rate	No. of inputs enal	bled X 320ms			
			eg: All inputs enabled $6 \times 320 = 1920$				
			eg: 1 input enabled 1 x 320 = 320ms				
	Isolation	-	1500Vrms between field and logic				
RTD Type	Number	Туре	Range	Accuracy			
	1	PT100	-200 to 850°C	0.3°CIEC 751:1983			
	2	Ni120	-80 to 320°C	0.3°C			
	3	PT1000	-200 to 850°C	0.3°C			
	4	Ni1000-DIN	-200 to 850°C	0.3°C			
	5	Ni1000-	-200 to 850°C	0.3°C			
		Landys&Gyr					
	6	Ohms	10 - 400 ohms				
	7	Ohms	100-4000ohms				
Temperature	Operating Ter	•	-20°C to + 70°C				
	Storage Temp		-40°C to + 85°C				
Connectors	Logic Power a	ind Comms.	5 way connector that clips onto DIN rail				
	Inputs		6 x 3 Way screw connector on top and bottom				


3.10.3 Status Indicators

Power:Flashes to indicate the CPU is running.RS485 Rx:Flashes to indicate the unit has received a valid Modbus message.RS485 Tx:Flashes to indicate the unit has sent a Modbus message.Input Status:"ON" when the RTD is open circuit.
"OFF" when the RTD is connected.

3.10.4 Wiring

The following diagram shows how the inputs are connected to a 2 and 3 wire RTD.

3.10.5 Module Calibration

To calibrate an input, perform the following steps:

- 1. Run IOStudio on a PC to easily access the Modbus registers used for calibration.
- 2. Power up the module and let it settle for 30 minutes.
- Connect a resistance box to input 1. Set to 10.00 ohms. One wire is connected to 1a and 1b (linked). The other wire to 1c. Allow the input to settle for a few seconds.
- 4. Write the value 1 into the "RTD type" output register 40101 to select PT100.
- 5. Write the value 1 into the "Calibrate Control Data" output register 40017 to save the zero value.
- 6. Set the input to 400.00 ohms and allow the input to settle for a few seconds.
- 7. Write the value 2 into the "Calibrate Control Data" output register 40017 to save the span value.
- 8. Write the value 3 into the "RTD type" output register 40101 to select PT1000.
- 9. Set the input to 100.00 ohms and allow the input to settle for a few seconds.
- 10. Write the value 1 into the "Calibrate Control Data" output register 40017 to save the zero value.
- 11. Set the input to 4000.00 ohms and allow the input to settle for a few seconds.
- 12. Write the value 2 into the "Calibrate Control Data" output register 40017 to save the span value.

3.10.6 PB6RTD Data Registers (MODULE TYPE = 159)

Modbus Address	Register Name	Low Limit	High Limit	Access	Description
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 159
30002	RTD Input 1	-xxx.x	уууу.у	R	Thermocouple Inputs. See table for range.
30003	RTD Input 2	-xxx.x	уууу.у	R	Resolution in 0.1°C.
30004	RTD Input 3	-xxx.x	уууу.у	R	п
30005	RTD Input 4	-xxx.x	уууу.у	R	п
30006	RTD Input 5	-xxx.x	уууу.у	R	п
30007	RTD Input 6	-xxx.x	уууу.у	R	п
30008	Input Status	0	65535	R	bit1 = 0(OK),bit1 = 1(error or open circuit)
30016	Calibrate Raw Data	0	65535	R	Raw data used to verify that the data has settled during calibration.
40017	Calibrate Control	0	2	R/W	Used to step through the calibration sequence.
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel
40101	RTD 1 Type	1	7	R/W	See RTD Tables.
40102	RTD 2 Type	1	7	R/W	See RTD Tables.
40103	RTD 3 Type	1	7	R/W	See RTD Tables.
40104	RTD 4 Type	1	7	R/W	See RTD Tables.
40105	RTD 5 Type	1	7	R/W	See RTD Tables.
40106	RTD 6 Type	1	7	R/W	See RTD Tables.
40111	Input 1 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40112	Input 2 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40113	Input 3 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40114	Input 4 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40115	Input 5 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40116	Input 6 Enable	0	1	R/W	0 = Enable, 1 = Disable.
40117	Line Frequency	50	60	R/W	Line Frequency
40118	Units Type	1	2	R/W	1=°C, 2=°F
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 115200, 187500
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)

3.10.6.1 RTD Input Status.

There is one status bits associated with each RTD input. These bits are used to indicate if the input is open circuit or over range. If the input is open circuit or over range, then the error bit will be set.

Bit 1- Error	Bit 2-Not Used	<u>Condition</u>	Status LED
0	0	Input working OK.	(LED OFF)
1	0	Open circuit / Over range.	(LED ON)

The analog input status can be read in a single register as follows:

	MSB PB6RTD ANAL						G INPU	T STAT	US				LSB			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	ADDRESS
32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1	30008
																IP1 Frror IP2 Error IP3 Frror IP4 Frror IP5 Error IP6 Error

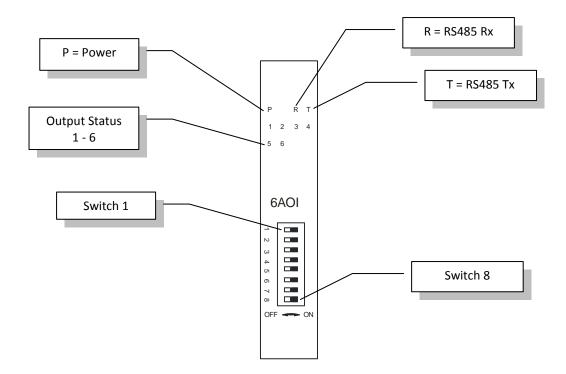
3.11 PB6AOI - ANALOG OUTPUTS

3.11.1 Description

The PB6AOI is a 6 channel current output module. Each channel can be set to output a current in the range 0 - 20mA. The outputs are isolated from the logic and share a common negative terminal.

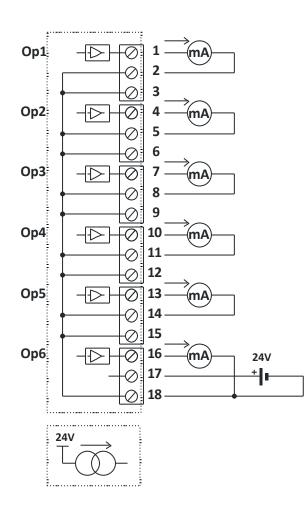
The resolution is 12 bits, so writing a value to the Modbus register for each output of 0 - 4095 would give an output current of 0 - 20mA. A value of $819 \pm 1LSB$ will give a current output of 4mA.

There are a number of different output formats that can be selected such as 12 bits, 16 bits, 0-20mA and 4-20mA.



Power Supply	Logic Supply \	/oltage	12 -24 Vdc 44mA @ 12V / 25mA @ 24V					
	Logic Supply (Current						
	Field Supply V	/oltage	24 Vdc					
	Field Supply C	Current	175mA					
Current Outputs	Output Points	5	6					
	Output Curre	nt	0(4) - 20 mA					
	OutputType	Range	Resolution					
	1	0–20.000mA	12 bits 0 – 4095					
	2	4–20.000mA	12 bits 0 – 4095					
	3	0–20.000mA	16 bits 0 – 65535					
	4	4–20.000mA	16 bits 0 – 65535					
	5	0–20.000mA	1uA 0 - 20000					
	Drift		100ppm/°C					
	Accuracy		0.05% of span					
	Output updat	e rate	All outputs every 60ms					
	Compliance		1000 ohms max. @ 24Vdc					
Isolation	Between field	l and logic	1500Vrms between field and logic					
Temperature	Operating Ter	mperature.	-20°C to + 70°C					
	Storage Temp	erature	-40°C to + 85°C					
Connectors	Logic Power a	nd Comms.	5 way connector that clips onto DIN rail 6 x 3 Way screw connector on top and					
	Inputs							
			bottom					

3.11.2 Technical Specification of PB6AOI


3.11.3 Status Indicators

Power:Flashes to indicate the CPU is running.RS485 Rx:Flashes to indicate the unit has received a valid Modbus message.RS485 Tx:Flashes to indicate the unit has sent a Modbus message.Output Status:"ON" when the output is zero.
"OFF" when the output is between zero and full scale.
"Flashing" when the output is at full scale.

3.11.4 Wiring

The following diagram shows how the analog outputs are connected to a load.

3.11.5 Module Calibration

To calibrate an output, perform the following steps:

- 1. Run IOStudio on a PC to easily access the Modbus registers used for calibration.
- 2. Connect a 20mA current meter to the output to be calibrated.
- 3. Write the channel number into the "Calibrate Channel Number" register 40018.
- 4. Write the value 1 into the "Calibrate Control Data" output register 40017.
- 5. Write the reading from the meter into the "Calibrate Data" output register 40016.
- 6. Write the value 2 into the "Calibrate Control Data" output register 40017.
- 7. Write the reading from the meter into the "Calibrate Data" output register 40016.
- 8. Write the value 3 into the "Calibrate Control Data" output register 40017 to complete the calibration.
- 9. Repeat the steps for the remaining channels.

3.11.6 PB6AOI Data Registers (MODULE TYPE = 160)

Modbus Address	Register Name	Low Limit	High Limit	Access	Comments		
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 160		
40002	Current Output 1	0	4095	R/W	Current Outputs. 0 - 4095 = 0(4) - 20mA.		
40003	Current Output 2	0	4095	R/W	n		
40004	Current Output 3	0	4095	R/W	п		
40005	Current Output 4	0	4095	R/W	п		
40006	Current Output 5	0	4095	R/W	п		
40007	Current Output 6	0	4095	R/W	п		
40010	Output Status	0	65535	R	bit2 = 0(0), bit2 = 1(4095) bit1 = 0(OK),bit1 = 1(error)		
40016	Calibrate Data	0	65535	R	Data entered by user for calibration.		
40017	Calibrate Control	0	3	R/W	Used to step through the calibration sequence.		
40018	Calibrate Channel	1	6	R/W	Enter the channel number to be calibrated		
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel		
40101	Output 1 Type	1	5	R/W	See Specification Tables.		
40102	Output 2 Type	1	5	R/W	See Specification Tables.		
40103	Output 3 Type	1	5	R/W	See Specification Tables.		
40104	Output 4 Type	1	5	R/W	See Specification Tables.		
40105	Output 5 Type	1	5	R/W	See Specification Tables.		
40106	Output 6 Type	1	5	R/W	See Specification Tables.		
40111	Output 1 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40112	Output 2 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40113	Output 3 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40114	Output 4 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40115	Output 5 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40116	Output 6 Enable	0	1	R/W	0 = Enable, 1 = Disable.		
40119	Watchdog Timer	0	255	R/W	Timer in seconds. 0 = disabled. 1 -255 = enabled.		
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 11520, 18750		
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd		
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits		
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)		

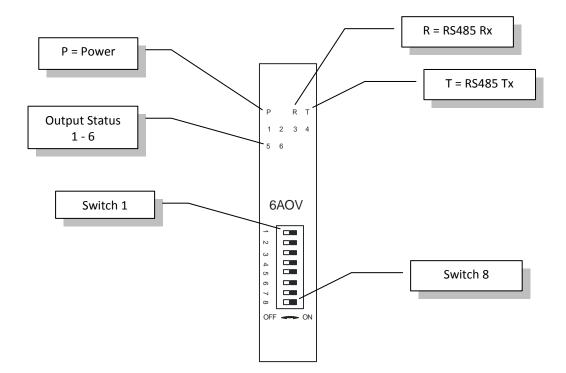
3.12 PB6AOV - ANALOG OUTPUTS

3.12.1 Description

The PB6AOV is a 6 channel voltage output module. Each channel can be set to output a voltage in the range 0 - 10V. The outputs are isolated from the logic and share a common negative terminal.

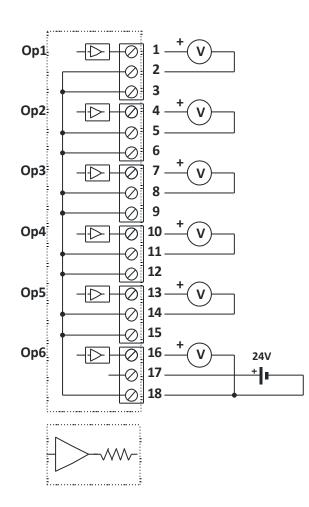
The resolution is 12 bits, so writing a value to the Modbus register for each output of 0 - 4095 would give an output current of 0 - 10V. A value of 819 \pm 1LSB will give a current output of 2V.

There are a number of different output formats that can be selected such as 12 bits, 16 bits, 0-20mA and 4-20mA.



Power Supply	Logic Supply	Voltage	12 -24 Vdc			
	Logic Supply	Current	44mA @ 12V / 25mA @ 24V			
	Field Supply	Voltage	24 Vdc			
	Field Supply	Current	85 mA max.			
Voltage Output	Output Point	S	6			
	Output Volta	ige	0(2) - 10 V			
	InputType	Range	Resolution			
	1	0-10.000V	12 bits 0 – 4095			
	2	2-10.000V	12 bits 0 – 4095			
	3	0-10.000V	16 bits 0 – 65535			
	4	2-10.000V	16 bits 0 – 65535			
	5	0-10.000V	1mV 0-10000			
	Drift		100ppm/°C			
	Accuracy		0.05% of span			
	Output upda	te rate	All outputs every 60ms			
	Compliance		2000 ohms min. load			
Isolation	Between fiel	d and logic	1500Vrms between field and logic			
Temperature	Operating Te	emperature.	-20°C to + 70°C			
	Storage Tem	perature	-40°C to + 85°C			
Connectors			5 way connector that clips onto DIN rail			
	Inputs		6 x 3 Way screw connector on top and			
			bottom			

3.12.2 Technical Specification of PB6AOV


3.12.3 Status Indicators

Power:Flashes to indicate the CPU is running.RS485 Rx:Flashes to indicate the unit has received a valid Modbus message.RS485 Tx:Flashes to indicate the unit has sent a Modbus message.Output Status:"ON" when the output is zero.
"OFF" when the output is between zero and full scale.
"Flashing" when the output is at full scale.

3.12.4 Wiring

The following diagram shows how the analog outputs are connected to a load.

3.12.5 Module Calibration

To calibrate an output, perform the following steps:

- 1. Run IOStudio on a PC to easily access the Modbus registers used for calibration.
- 2. Connect a 10V volt meter to the output 1.
- 3. Write the value 1 into the "Calibrate Control Data" output register 40017.
- 4. Write the reading from the meter into the "Calibrate Data" output register 40016.
- 5. Write the value 2 into the "Calibrate Control Data" output register 40017.
- 6. Write the reading from the meter into the "Calibrate Data" output register 40016.
- 7. Write the value 3 into the "Calibrate Control Data" output register 40017 to complete the calibration.

3.12.6 PB6AOV Data Registers (MODULE TYPE = 161)

Modbus Address	Register Name	Low Limit	High Limit	Access	Comments	
30001	S/W Version / Module Type	N/A	N/A	R	High Byte = Software Version Low Byte = 161	
40002	Voltage Output 1	0	4095	R/W	Voltage Outputs. 0 - 4095 = 0 - 10V.	
40003	Voltage Output 2	0	4095	R/W	п	
40004	Voltage Output 3	0	4095	R/W	п	
40005	Voltage Output 4	0	4095	R/W	п	
40006	Voltage Output 5	0	4095	R/W	п	
40007	Voltage Output 6	0	4095	R/W	п	
40010	Output Status	0	65535	R	bit2 = 0(0), bit2 = 1(4095) bit1 = 0(OK),bit1 = 1(error)	
40016	Calibrate Data	0	65535	R	Data entered by user for calibration.	
40017	Calibrate Control	0	3	R/W	Used to step through the calibration sequence.	
30100	DIP Switch	0	65535	R	Status of DIP Switch on Front Panel	
40101	Output 1 Type	1	5	R/W	See Specification Tables.	
40102	Output 2 Type	1	5	R/W	See Specification Tables.	
40103	Output 3 Type	1	5	R/W	See Specification Tables.	
40104	Output 4 Type	1	5	R/W	See Specification Tables.	
40105	Output 5 Type	1	5	R/W	See Specification Tables.	
40106	Output 6 Type	1	5	R/W	See Specification Tables.	
40111	Output 1 Enable	0	1	R/W	0 = Enable, 1 = Disable.	
40112	Output 2 Enable	0	1	R/W	0 = Enable, 1 = Disable.	
40113	Output 3 Enable	0	1	R/W	0 = Enable, 1 = Disable.	
40114	Output 4 Enable	0	1	R/W	0 = Enable, 1 = Disable.	
40115	Output 5 Enable	0	1	R/W	0 = Enable, 1 = Disable.	
40116	Output 6 Enable	0	1	R/W	0 = Enable, 1 = Disable.	
40119	Watchdog Timer	0	255	R/W	Timer in seconds. 0 = disabled. 1 -255 = enabled.	
40121	Baud Rate	2400	18750	R/W	2400, 4800, 9600, 19200, 38400, 57600, 115200, 187500	
40122	Parity	0	2	R/W	0 = none, 1 = even, 2 = odd	
40123	Stop Bits	1	2	R/W	1 = 1 stop bit, 2 = 2 stop bits	
40124	Reply Delay	0	255	R/W	0 = Disable, >0 = Enable. (x10ms)	

3.13 PBE – MODBUS TCP ETHERNET to MODBUS RS485 GATEWAY

3.13.1 Description

The PBE GATEWAY is an Ethernet to serial converter and connects the PROBUS modules to a 10/100 Base-TX Ethernet network.

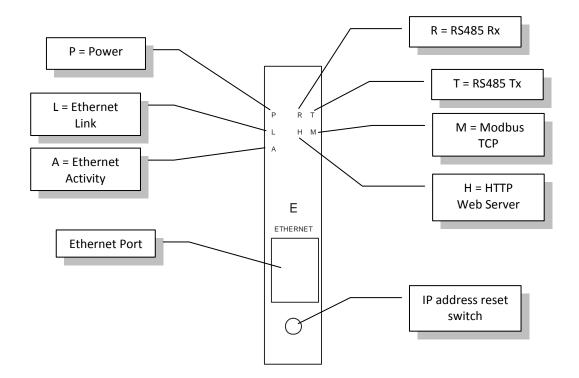
The PBE GATEWAY includes a web server which enables access to internal parameters for configuration. This allows configuration of IP address, default gateway IP address and subnet mask. The web server can be accessed by most web browsers.

The PBE GATEWAY is factory programmed with a default IP address of 169.254.111.111. This address must be changed before the converter is added to an existing network.

The web page address for viewing the setup parameters is http://169.254.111.111/index.htm The web page address for configuring the converter is http://169.254.111.111/ip.htm

The master device which is polling the modules must be configured with the IP address of the PBE GATEWAY and with the modbus ID of the PROBUS modules. As each PROBUS communications bus is separate, it is possible to have repeated Modbus ID's on the

PROBUS modules provided they are attached to a different PBE GATEWAY. The IP address differentiates between the different PROBUS systems. Consequently, many hundreds of PROBUS modules may be added to an Ethernet network.


The PBE GATEWAY is a Modbus gateway and the client must be configured to use **Port 502.** This is a reserved port number for Modbus TCP applications and informs the PBE GATEWAY that it must implement the protocol conversion from Modbus TCP on the Ethernet network to Modbus RTU on the PROBUS serial communications bus.

Power Supply	Logic Supply Voltage	12 -24 Vdc			
	Logic Supply Current	68mA @ 12V / 36mA @ 24V			
Ethernet	10/100 Mbits/s	10/100Base-TX			
	Connector	RJ45			
Serial	RS485	2 Wire Multidrop twisted pair + GND			
	Baud Rate	2400, 4800, 9600, 19200, 38400, 57600,			
		115200			
	Data Bits	8			
	Parity	none, even, odd.			
	Stop Bits	1, 2.			
Temperature	Operating Temperature.	-20°C to + 70°C			
	Storage Temperature	-40°C to + 85°C			
Connectors	Logic Power and Comms.	5 way connector that clips onto DIN rail			
Humidity		Up to 95% non condensing.			

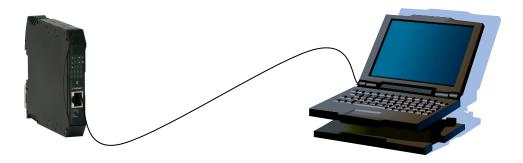
3.13.2 Technical Specification of PBE

3.13.3 Status Indicators

Power: Serial Bus Rx:	Flashes to indicate the CPU is running. Flashes to indicate the unit has received a valid Modbus message from a PROBUS module.
Serial Bus Tx:	Flashes to indicate the unit has sent a Modbus message to a PROBUS module.
Modbus TCP Rx:	Flashes to indicate the unit has received a valid Modbus message on the Ethernet network.
Modbus TCP Tx:	Flashes to indicate the unit has transmitted a Modbus message on the Ethernet network.
Web Server:	Flashes to indicate the HTTP web server is being accessed.

3.13.4 Configuration

3.13.4.1 Power Connections.


The PBE GATEWAY Module must be clipped onto a DIN rail. Power for the PBE GATEWAY must be applied to terminal 2 (+12/24VDC) and terminal 1 (0V). The power LED will flash and all LED's will be off.

3.13.4.2 Ethernet Connection.

Next the Ethernet connection is required, either through a network or directly to a PC. The Ethernet interface uses a standard RJ45 connector.

3.13.4.3 Connecting To a PC which is not Connected to a Network.

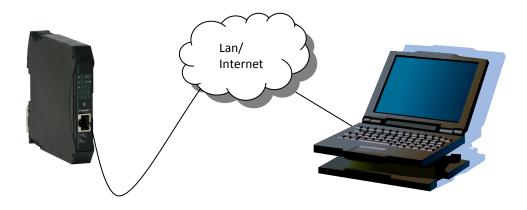
If the PC is equipped with an Ethernet card but not connected to a network, a local network address should be used for communication between the PBE GATEWAY and the PC. The PBE GATEWAY is shipped with a default IP address 169.254.111.111. This address is in the address area reserved for local networks not connected to the Internet. For direct connection between the PC and the PBE GATEWAY, a crossover Ethernet cable is required.

To setup your PC to connect directly to the PBE GATEWAY, an IP address in the same range as the PBE GATEWAY must be assigned to the PC. In Windows environments, this should be done as follows:

- Connect the PC and the PBE GATEWAY together using a crossover cable
- Open the Windows Control Panel
- Select Network
- Select TCP/IP -> the PC's Ethernet adaptor from the Configuration tab as shown below

Network ? 🗙
Configuration Identification Access Control
The following network components are installed:
FIPX/SPX-compatible Protocol -> Internet Connection Shar
≩ TCP/IP (Shared) -> Dial-Up Adapter TCP/IP -> 10/100M PCI Fast Ethernet Adapter
TCP/IP -> Internet Connection Sharing
📮 File and printer sharing for Microsoft Networks 🛛 🔍
Add Remove Properties
Primary Network Logon:
Client for Microsoft Networks
<u>File and Print Sharing</u>
Description
TCP/IP is the protocol you use to connect to the Internet and wide-area networks.
wide-area networks.
OK Cancel
OK Cancel

• Click the properties button. A TCP/IP Properties box similar to the one below should appear


TCP/IP Properties		? ×
Bindings DNS Configuration	Advanced Gateway WINS Confi	NetBIOS guration IP Address
If your network doe	be automatically assigner as not automatically assign nistrator for an address, ar	n IP addresses, ask
C <u>O</u> btain an IP –⊙ Specify an IP	address automatically	
IP Address:	169.254.111	.112
S <u>u</u> bnet Mas	k: 255.255.255	. 0
	C OK	Cancel

- Select the IP Address tab
- Choose to Specify an IP address as shown in the figure
- Insert the IP address 169.254.111.112 and the corresponding subnet mask as shown

- Save your settings by pressing OK in both TCP/IP properties and Network properties
- Reboot your PC

3.13.4.4 Connecting to a PC which is connected to a Network.

If there is an Ethernet network available, the PBE GATEWAY can be connected to any Ethernet connection or hub belonging to the network. If the PC is connected to a network, there is a strong possibility that the default IP address of the PBE GATEWAY is outside the range of the network (the address doesn't belong to the IP subset of the network). If the Ethernet network is connected to the Internet, this is certain. In this case a new IP address for the PBE GATEWAY is required. Contact the local network administrator to be assigned a free IP address for the PBE GATEWAY. The new IP address is programmed into the PBE GATEWAY using a Web browser software such as Internet explorer. In this case the PBE GATEWAY must first be connected directly to a PC as described above.

In the remainder of this chapter, the IP address 169.254.111.111 is used as an example. Exchange this IP address with the IP address you have set up in all the occurrences.

3.13.4.5 Testing the Connection

To test the connection between the PC and the PBE GATEWAY, a simple program called *ping* can be used. *Ping* sends a number of messages to the specified IP address and displays the response. The ping program can be run from the command line or from a DOS window on the PC, as follows:

- Open the Windows Start Menu
- Click Run
- In the Open box, type: "ping 169.254.111.111"

If the network connection is OK, the program will respond with: "Reply from 169.254.111.111" and information about the response time.

If there is a problem with the network setup the program will respond:

"Destination host unreachable". There may be two solutions to this problem:

- If the PC is connected in a network, change the IP address to an address accessible from the local network.
- If the PBE GATEWAY is connected directly to the PC(or through a hub), change the PC's IP address to one in the same address range as the PBE GATEWAY.

If there is a problem with the PBE GATEWAY the program will respond:

"**Request timed out**", this means that the PBE GATEWAY can not respond to messages. Check the power connection. Check that the Link LED is illuminated when the cable is plugged into the RJ45 connector.

3.13.5 Viewing Web Pages

The PBE GATEWAY has built in web pages. These are used for checking the configuration and dynamic data, and for altering the configuration. To view these Web pages, a Web browser such as Internet Explorer or Netscape is needed.

To view the default Web page in PBE GATEWAY, start the Web browser and type "169.254.111.111" into the address line of the browser window. The main page of the PBE GATEWAY will now be displayed in the browser window.

If no Web page is displayed, go back to testing the network connection to the PBE GATEWAY by using the ping command. If the PBE GATEWAY replies to the ping messages, check the setup of the Web browser. If the PBE GATEWAY is directly connected to the same network as the PC, "direct connection to the network" or "bypass proxy server for local addresses" should be selected in the Web browser configuration menu. If the PBE GATEWAY is connected to the PC through a firewall, a proxy server should be selected in the configuration menu. Contact the local network administrator for information about the network configuration.

PBE Serial/Ethernet Converter & Modbus Gateway

HOME PAGE

Module Name: PBMT

Welcome to the Procon PBE MODBUS TCP Gateway home page. This gateway is used to connect an Ethernet network to a RS485 network, and converts the Modbus TCP protocol to the standard Modbus RTU serial protocol on RS485.

PBMT Configuration Parameters							
Software Version	1						
MAC Address	50	c2c3	2000				
Module IP	169	254	111	111			
Default Gateway IP	169	254	111	1			
Subnet Mask	0	0	0	0			
Modbus Socket Time Out	90					X 1 second	
FTP Socket Time Out	30					X 1 second	
Communications Settings							
Baud Rate	9600						
Data Bits	8						
Parity	0				0=None, 1=Even, 2=Odd		
Stop Bits	1						

For product information visit the Procon Electronics web site: www.proconel.com

This Web Server is powered by Atmel ARM.

Network Speed 100 Mbits/sec FULL DUPLEX

3.13.6 Troubleshooting Guide.

No	Checkpoint		Solution
1	Is the LINK LED on and is the ACTIVITY LED flashing with short pulses?	No Yes	No network connection is detected. The Ethernet cable is either not plugged in or wrong type of cable is used. For connection to a network with a hub or switch, a normal network cable can be used. For direct connection to a PC network card, a twisted cable must be used. A network connection is detected, the PBE GATEWAY
2	Does the PBE GATEWAY respond to PING requests?	No	 is connected to the network. Either the PC or the PBE GATEWAY is setup with wrong IP address. To change the IP address of the PBE GATEWAY back to the default address, remove the power, open the PBE GATEWAY housing and remove the jumper labeled DEFAULT IP. Apply power to the PBE GATEWAY for a short while. Now replace the jumper and close the enclosure. To change the IP address of a PC, use the Windows "control panel -> network -> TCP/IP properties" and setup an IP address close to the PBE GATEWAY address. The PBE GATEWAY is shipped with a default IP address of 169.254.111.111, the PC can be setup with an IP address of 169.254.111.112
		Yes	The PC and PBE GATEWAY are setup with a correct IP address and they are able to communicate with each other.
3	Can the default Web page be accessed in a Web browser?	No Yes	This is normally caused by the setup of the Web browser. In the "options" or "preferences" menu, check that the Web browser is configured for direct network connection or local area network and NOT using a proxy server. No problems.

3.13.7 Parameter Configuration

The Web page address "169.254.111.111/ip.htm" is entered into the address line of the browser window to access the configuration page. This page allows you to change the IP address of the PBE GATEWAY, Default Gateway, Subnet Mask, and to enter a Module Description Name for identification/maintenance purposes.

	PCE PROCON ELECTRONICS									
PBE Serial/Ethernet Converter										
	&									
	IV	1odbus Gateway								
	Ethernet Con	figuration Parameters								
Module IP	169 254 111 11	1								
Default Gateway I	P 169 254 111 1									
Subnet Mask	0 0 0 0									
Socket Time Out	90	X 1 second								
		Submit								
	Commur	nication Settings								
Modbus Comms Watchdog	0	X 1 minute								
	RS485 Communi	cations Port Parameters								
Baud Rate	9600 🗸									
Parity		0=None, 1=Even, 2=Odd								
Stop Bits	1 🗸									
Modbus End of Message Timer	0	X 1 ms + 3.5 Characters								
Serial Reply Timeout	30	X 10 milliseconds								
RS485 On Delay	0	X 1 milliseconds								
RS485 Off Delay	0	X 1 milliseconds								
Submit Module Name PBMT										
		Submit								
Password										
		Submit								

Warning: The IP address will not be updated until the power on the module has been switched off and on again. After clicking on the Submit button check that the correct IP address has been entered. If you forget the IP address, refer to the user manual to reset the module back to the default IP value.

• Module IP Address: The new IP address can be entered into the web page as shown above. After this has been done, you must click the Submit button to send the values to the Converter Module. The screen will now be updated and if successful will continue to display the new IP address. The new IP address will only be effective after the PBE Gateway power has been switched off and on again. This feature allows you to check that the correct IP address has been entered before being activated. If the IP address has been entered incorrectly and the power has not been switched off, it is possible to re-enter the correct IP address. If the power has been switched off and back on again, the PBE Gateway will not communicate until you enter the new IP address into the address line of the browser window. The push button reset switch on the front of the module is used to reset back to the default factory IP address.

Perform the following steps to reset the IP to factory default (169.254.111.111)

- a. Switch off the power.
- b. Push and hold the switch.
- c. Switch on power for 5 seconds.
- d. Release the switch.
- **Default Gateway IP Address:** A **default gateway** is a node (a router) on a computer network that serves as an access point to another network. In enterprises, however, the gateway is the computer that routes the traffic from a PC to the outside network that is serving the Web pages. It is only necessary to configure the default gateway IP address if the PC that is accessing the PBE Gateway is on a different network.
- Subnet Mask: In computer networks, a subnetwork or subnet is a range of logical addresses within the address space that is assigned to an organization. The subnet mask is used to inform the Converter that it must send its replies to the gateway if the IP address of the PC is on a different network. When the subnet mask is set to "0.0.0.0" then it is effectively disabled and the default gateway is not used. A typical subnet mask would be "255.255.255.0".
- Socket Timeout: If a socket connection is broken, say due to a network fault, it must timeout to free it up so that it can be used again. This timer is triggered by activity on the PBE Gateway, so if there is no communications activity for longer than the timeout period, the socket will close.
- **Modbus Communications Watchdog:** If a value other than zero is entered into this field, the watchdog will be enabled and will be reset every time there is a Modbus message. If there is a break in the Modbus communications which is longer than the timeout value, then the module will be reset.
- Baud Rate, Parity, Stop Bits: The configuration of the serial port can be configured by selecting the parameters from the pull-down menu. Note: The power must be cycled to reset the unit after the communication settings have been changed.
- Modbus End of Message Timer: The standard way of determining the end of a Modbus message is to time 3.5 characters. (as per the Modbus protocol specification) Some Modbus slaves are not compliant with the Modbus specification and have time delays between characters which would normally result in an error. This field enables the converter to have a longer end of message timeout to be able to function correctly with these slave devices.
- Serial Reply Timeout: This timeout is the time the module waits for a reply from a slave device. If a reply is received then this timeout is cancelled and the converter looks for the next TCP message. If the slave does not send a reply, then this timeout will expire and allow the converter to look for the next TCP message. This timeout must be longer than the turn-around time of the slave device or it will timeout before the slave replies.
- **RS485 On Delay:** This is the time the RS485 transmitter will be enabled before data is transmitted.
- **RS485 Off Delay:** This is the time the RS485 transmitter will be enabled after data is transmitted.
- **Module Name:** This field allows you to enter a module description name into the PBE GATEWAY. This is an identifier for diagnostic/maintenance purposes and is chosen to best describe the PBE GATEWAY in the system by name or number.

4. SPECIFICATIONS

4.1 ENVIRONMENTAL

Operating Temperature Storage Temperature Humidity -20°C to +70°C -40°C to +85°C Up to 95% non condensing.

4.2 EMC INSTALLATION INSTRUCTIONS

- 1. Screened twisted pair RS485 cable must be used with the screen grounded at one point only.
- 2. The RS485 cable must be terminated at both ends using a 120 ohm resistor.
- 3. Use should be made of screened I/O, T/C, RTD cable with the screens grounded at one point as close to the PROBUS module as possible.
- 4. The PROBUS modules must be installed in an appropriate enclosure inaccessible to the operator during normal use.

4.3 CONFORMITY CERTIFICATE

	DECLARATION OF CONFORMITY according to EN 45014								
Manufacturer's Na	ame:	Procon Electronics Pty Ltd							
Manufacturer's Ado	dress:	22/195 Prospect Highway Seven Hills NSW 2147 Australia							
	declares that	the product							
Product Name	:	PROBUS							
Model Number(s):	PB16DI, PB16DO, PB6DIO, PB6RO, PB8AII, PB8AIV, PB6AIIS, PB6AIVS, PB6AOI, PB6AOV, PB6TCS, PB6RTD, PBE							
		EC and Low Voltage Equipment Directive 2006/95/EC and effoliowing Product specifications:							
EMC:		EN 61326-1:2013 Electrical Equipment for measurement, control and laboratory use.							
<u>Seven Hills</u> Location	<u>23 April 2013</u> Date	D.Ruddock							

4.4 EMC Test Results

		PROB	JS EMC	Test Resu	ults					
Test	Standard	Test Value		PROBUS Product Compliance (PB)						
Immunity Test Results EN 61326-1		16DI	16DO	6RO	6DIO	8AII	6AIIS	8AIV		
Electrostatic	IEC 61000-4-2	8KV Air	Α	Α	Α	Α	Α	А	Α	
Discharge		4KV Contact	Α	Α	Α	Α	Α	А	Α	
Radiated Field	IEC 61000-4-3	10V/m	Α	Α	Α	Α	Α	А	Α	
Fast	IEC 61000-4-4	Power 2KV	Α	Α	Α	Α	Α	А	Α	
Transients		I/O 1KV	Α	Α	Α	Α	В	В	В	
Surge	IEC 61000-4-5	Power 1KV/2KV	A	A	A	A	A	A	A	
RF Conducted	IEC 61000-4-6	Power 3 Vrms	А	A	A	A	A	A	A	
Voltage Interrupt	IEC 61000-4-11	0.5cycle 100%	A	A	A	A	A	A	A	
E	missions Test Result EN 61326-1 Class A	5								
Radiated Emissions	CISPR 22	Class A	✓	✓	~	✓	~	√	✓	
Conducted Emissions	CISPR 22	Class B	~	~	~	~	~	✓	✓	

Test	Standard	Test Value	PROBUS Product Compliance (PB)						
Immunity Test Results EN 61326-1			6AIVS	6TCS	6RTD	6AOI	6AOV	E	
Electrostatic Discharge	IEC 61000-4-2	8KV Air	В	В	Α	Α	Α	А	
		4KV Contact	А	А	Α	А	А	А	
Radiated Field	IEC 61000-4-3	10V/m	Α	Α	Α	А	Α	А	
Fast Transients	IEC 61000-4-4	Power 2KV	Α	Α	Α	А	А	А	
		I/O 1KV	В	Α	В	А	А	А	
Surge	IEC 61000-4-5	Power 1KV/2KV	A	A	A	A	A	A	
RF Conducted	IEC 61000-4-6	Power 3 Vrms	A	A	A	A	A	А	
Voltage Interrupt	IEC 61000-4-11	0.5cycle 100%	A	A	A	A	А	A	
E	missions Test Result EN 61326-1 Class A	S							
Radiated Emissions	CISPR 22	Class A	~	~	~	~	\checkmark	\checkmark	
Conducted Emissions	CISPR 22	Class B	~	~	~	~	~	~	